×

To make the most of your techUK website experience, please login or register for your free account here.

Climate action hub

In 2019, the UK became the first country in the world to set a legal target to be net zero by 2050. Since then, hundreds of companies, many of them in the tech sector, have adopted a science-based target and committed to climate action. techUK is committed to reaching net zero and has developed useful resources, events and guidance to help our members and the sector reach this important goal.

Share this page

 

Susanne Baker
techUK has joined the Race to Zero and we’d love to see other members joining us in committing to take action to address their carbon emissions. Every commitment and action will make a difference. Adopting an ambitious climate target sounds daunting, but with the right tools it need not be. Our guide for techUK members – developed with leading experts within our membership - outlines the case for adopting a carbon commitment, the key steps to take to tackle your carbon emissions and some easy wins you can action today. We also set out trusted resources you can depend on.

Susanne Baker

Associate Director, Climate, Environment and Sustainability, techUK

Climate action guidance for tech SMEs

Read more

Race to Zero | Commit to climate action

The Race to Zero campaign, a global campaign to rally leadership and support from businesses, cities, regions and investors, is working to build momentum around the shift to a decarbonized economy. Companies of all sizes are being encouraged to commit to climate action, including SMEs. To make it easier for SMEs to take climate action, the SME Climate Hub hosts the SME Climate Commitment to make it easier for smaller companies to act and join the Race to Zero.

Learn more

 

Commit to climate action - useful resources

Net Zero: techUK publishes climate action guidance for tech SMEs

New techUK guide outlines key steps in taking action on climate.

Data Centre Energy Routemap

How the sector can address its energy challenges and play its part in delivering the UK’s low carbon future.

AI for Energy report outlines opportunities for applying AI in the energy sector

The report highlights the key areas where AI applications can support decarbonisation and help achieve net-zero

techUK report: Making the UK a digital clean tech leader

Government must back emerging digital clean tech sector says techUK.

The International Telecommunication Union (ITU)

The ITU's tech sector trajectories.

Business Climate Hub

The UK government has partnered with business owners and respected climate groups to help you join them today.

 

Climate FAQs

What is the energy usage and climate impacts of the tech sector?

The total life cycle carbon footprint of the ICT sector is approximately 700 million tonnes carbon dioxide equivalent (Mt CO2e) per year. This is equivalent to 1.4% of global carbon emissions and around 4% global electricity use.

While total electricity consumption has increased by approximately 5% since 2015, the carbon emissions of the sector have dropped from around 730 Mt CO2e due to higher levels of renewable electricity use both globally and from specific investments by ICT companies.

The carbon emissions of the ICT sector cover the following:

  • An estimated 170 Mt CO2e from the telco sector of which 110 Mt CO2e is from mobile networks and 60 Mt CO2e from fixed networks. This includes network equipment manufacture, construction of network exchanges and mobile masts, and the operation and maintenance of the networks
  • Around 190 Mt CO2e from the manufacture of user devices such as computers, tablets, broadband routers, mobile phones, wearables and payment terminals
  • An estimated 190 Mt CO2e from the use of user devices
  • Approximately 130 Mt CO2e from data centres – this includes emissions from their construction and equipment manufacture as well as the operation of the data centres i.e. electricity use
  • Just under 20 Mt CO2e from enterprise networks, used by organisations to connect sites in different locations to the same network and systems

The entertainment and media sector is counted separately. This covers the use of TVs, games consoles, streaming of music and video, and printed media such as newspapers.  This sector accounts for an estimated further 1.1% of total CO2e and approximately 3% of global electricity consumption.

These figures exclude cryptocurrencies, such a bitcoin mining, which is estimated at 0.2% of global electricity use, and the use of surveillance cameras, which is approximately 0.15%.

This data is taken from Jens Malmodin and Dag Lundén. 2018. The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015 with more recent data included to update the figures. The results are derived from an extensive collection of actual sales, electricity usage and carbon emissions of the companies in the sector.

An older but frequently cited study presents three different scenarios for the expected consumption depending on the expected technology efficiency increase. The unrealistic ‘worst case’ scenario in this study (which suggests that the ICT sector could use as much as a fifth of overall electricity by 2030) in this study has been reported in media articles, despite the report authors highlighting more likely outcomes.

What action is the tech sector taking to reduce its own emissions?

A new international standard for the ICT sector has recently been published that outlines the pathway needed to meet the commitments outlined in the Paris Agreement. These guidelines are the first targets specific to the ICT sector that have been approved by the Science-Based Targets Initiative. It requires cuts of 45% by 2030 and sets out a roadmap for meeting net zero carbon emissions by 2050.[1]

To date, more than 50 mobile operators, which together account for around two thirds of mobile connections globally – are now disclosing their climate impacts, energy and GHG emissions via the internationally recognised CDP global disclosure system. The GSMA, the mobile industry association, is working with operators to help them commit to targets aligned to the new net zero pathway for the sector.

Globally, 29 network operators representing more than 30% of global mobile connections and 50% of mobile industry revenues have committed to setting Science-Based Targets, along with 35 hardware manufacturers. To date, 28 techUK members have signed up.

A shift to renewable energy is expected to account for most of the sector’s reductions over the next decade. Companies will also achieve greater energy efficiency and deepen relationships with suppliers to drive reductions through the supply chain. The latter is vital, especially for short-lived user devices, as supply chain emissions can represent two thirds of a companies’ full footprint[2].

If the ICT industry, ICT suppliers and end users all switch to using renewable energy then the carbon footprint of the ICT sector would be cut by more than 80%[3]. The sector is already a significant buyer of renewables. ICT companies operating large data centres are leaders in corporate procurement of renewables, accounting for about half of global procurement of renewables in recent years (IEA) and driving renewable deployment across the world through Power Purchasing Agreements (PPAs). The top six off-takers of renewables in 2019 were all ICT companies, led by Google.[4]

Other activities to decarbonise the sector include investing in energy efficient networks, virtualisation of networks, deploying energy conservation measures, and utilising free cooling.

Significant investment and R&D programmes are also in place covering energy technologies, battery innovation, energy efficiency, network efficiency, eco-design of products, re-use of equipment, repairing and recycling, climate-tech (covering agriculture, supply chains, buildings, energy, industry and cities) and climate and environment data analytic tools and platforms.


[1] ITU Press release (27/02/2020): ICT industry to reduce greenhouse gas emissions by 45 per cent by 2030 https://www.itu.int/en/mediacentre/Pages/PR04-2020-ICT-industry-to-reduce-greenhouse-gas-emissions-by-45-percent-by-2030.aspx

[4] BNEF Press release (28/01/2020) Corporate Clean Energy Buying Leapt 44% in 2019, Sets New Record https://about.bnef.com/blog/corporate-clean-energy-buying-leapt-44-in-2019-sets-new-record/

Will 5G mean more energy/climate will be consumed by the sector?

Although 5G networks are likely to drive a dramatic increase in mobile traffic, they are also designed to be more energy efficient than their predecessors. Crucially, 5G and related technologies give mobile operators precise control over their networks’ performance and, by extension, energy consumption. Operators have taken the opportunity of 5G’s introduction to rethink how to build, operate and manage networks in a smarter and more strategic way.

Mobile operators will increasingly be able to use network function virtualisation, software-defined networks and network slicing to tailor the connectivity to the needs of the application. That will mean less energy is wasted. Although 5G is likely to drive a massive expansion in the number of ‘things’ connected, many of these connections will consume very little energy. For example, some NB-IoT connected devices will be able to function for a decade using a single battery.

5G networks will be much denser than their predecessors, employing more base stations and other infrastructure. Moreover, many mobile operators will run 2G, 3G, 4G and 5G networks in tandem for much of the next decade, placing upward pressure on their energy usage before they are able to realise savings by decommissioning legacy networks.

However, some operators have decided to decommission both 2G and 3G networks, not the least due to reuse of frequencies, and by that a higher degree of energy efficiency will be achieved.

In addition, mobile broadband solutions such as Fixed Wireless Access (FWA) will replace older xDSL copper based broadband networks, especially in rural areas, delivering greater energy efficiency as well as future proof broadband access network with significantly lower environmental impact due to copper network maintenance.

Energy efficiency is important to the mobile subsector and ICT sector because electricity costs are a significant overhead, so network operators work closely with equipment manufacturers on energy efficiency. 5G and related technologies give mobile operators precise control over their networks’ performance and, by extension, energy consumption.

Will the growing use of data require a corresponding increase in energy use?

Rapid digitalisation and ongoing increases in data traffic presents significant opportunities to support the system changes needed to transition to ultra-low carbon economies from more accurate climate modelling and energy services to supporting smarter cities and home working. However, the growth in data raises questions around how the carbon footprint of ICT could change in the future, particularly with the building of larger data centres and the launch of new communications networks. The best starting point for understanding the future is to analyse historical developments, evaluating real-world measurements of electricity consumption and data traffic in light of expected future developments.

Looking at actual data from recent years, the electricity consumption and carbon footprint of the ICT sector does not follow the same trends as data traffic. Since 2010, total data traffic has increased approximately tenfold, while electricity consumption for the ICT sector has increased by less than 10%.

Looking specifically at data centres, studies show that while computing output from data centres went up six-fold from 2010 to 2018 electricity use increased up 6%.

In addition, energy efficiency improvements across the sector, the transition to renewable energy, together with replacing larger devices with smartphones, continues to limit ICT’s footprint, despite the ongoing build-out of networks and rising subscriber numbers.

Looking ahead, it is likely that data traffic will continue to rise exponentially, but that ICT’s carbon footprint and electricity consumption will not follow, due to continued developments in efficiency and the phasing out of older networks and access technologies paired with increased usage of renewables.

Arguments that the ICT industry will consume most of the world’s electricity within a couple of decades are, therefore, unreasonable (as well as far too expensive to support).

 

 

Why can’t smartphones be repaired or last longer?

In the UK, users tend to retain mobile phones for two years before replacing them. This reflects mobile phone contracts that run for two years before users are offered an opportunity to upgrade their phones. Recently this has been challenged by ‘SIM-only’ contracts and consumer reluctance to accept long binding periods.

However, the lifespan of a mobile phone can be as long as eight years. After upgrade, around 8% of handsets are either sold or returned and enter a vibrant second-hand market. The remainder are likely hoarded at home or gifted to friends and family.

Manufacturers are motivated to ensure mobiles are repairable and durable to minimise warranty costs. The focus has been primarily on preventing dust ingress and water damage, underpinned by international standards.

Other circular economy models have been explored. Some OEMs have begun to focus on increasing, retaining or recovering a product’s value, either by extending longevity and/or facilitating take back, repair, refurbishment, and resale. This in turn is leading to partnerships across the value chain or establishing their own in-house repair and refurbishment services.

The European Commission is currently exploring what eco-design measures can be introduced to further support phone’s longevity and has recently announced plans to introduce an EU-wide take back scheme. UK is also considering options as part of its approach to extended producer responsibility. Indeed, improving a products’ ability to repair and upgrade and its durability is a big focus of current EU and UK efforts on product design. Last year, for example, it introduced new rules requiring manufacturers of certain products to ensure spare parts are available for seven years and to provide repair information to professional repairers. It is also expected to introduce a new ‘right to repair’ in consumer law.

Isn’t the tech sector just investing in renewables to offset its impact?

Yes, the sector is seeking to offset its impact: and it is a trend that has positive system-wide benefits.

ICT companies are major investors in renewable energy and hold themselves strongly to the principle of additionality; enabling the development of renewable energy projects that would not have occurred without company’s commitment to by the off-taker for the project. This purchasing has also helped scale renewable energy, which has reduced the costs of renewable energy, developed new markets for renewables, and expanded renewable energy into regions that might have lagged without corporate purchasing pressure.

This trend has now spread into other sectors, but ICT remain a key player in the market. Data centre developers and network operators are increasingly sourcing renewable electricity, like wind or solar, with some making long-term contracts (PPAs) with developers to build power plants that otherwise would not be built. Companies also buy renewable electricity on the market by purchasing Renewable Energy Guarantee of Origin certificates to match their energy demand.

The top six corporate ‘off-takers’ of renewables in 2018 were all ICT companies; the sector is the largest global purchaser of Power Purchase Agreements (PPAs); and was by far the largest investor / purchaser of renewable electricity.

In a study of global telecom operator energy and carbon footprint performance for the period of 2010 – 2015 the share of renewable electricity reached about 46%. A later, not yet published ETNO study for the period 2015 – 2018 focusing on EU based telecom operators, calculated that the share of renewable electricity was about 74%.

In the case of PPAs, which are common in places like the USA, the renewable energy power plants are sized to generate at least as much electricity as the data centre would use over the course of a year, and in that annual sense, they are powering their data centres using clean electricity. In the UK, there is potential to consider how to unlock the PPA market, so PPAs are more accessible to companies that are keen to invest in them.

However, in any particular hour, the data centre or network operator might be drawing more or less power than the wind or solar facility is generating that hour, and accounting for that real time variation is the next step for renewable electricity use by data centres.

As energy storage becomes more common and renewable electricity generation becomes more widespread, this challenge will get easier. It may also unlock a role for data centres in demand side energy management. ICT companies are well equipped to participate in this new emerging market, because they are already familiar with combining digitalisation, back-up power and uninterrupted power supply. Data centres can play an important role in dynamic power systems that balance supplies of electricity from generators with demand from users.
 

Why is there such a range in predictions of techs' carbon footprint and future impact?

In several articles and papers, the assumed annual growth of the sector’s carbon footprint has been described as high and increasing, mostly based on the assumption that the sector’s carbon footprint and energy consumption is growing in line with exponential data increase. Estimates like these are usually based on limited and/or uncertain data, often of a certain age, that, overstates ICT’s footprint.

There are other complexities that make numbers hard to derive and compare studies in this area, which include:

  • Data: Being one of the most dynamic sectors in the world, ‘best before’ dates for data, not least intensities, are short. In general, while publication year of a study is often mentioned readers need to understand the age of the data as data is usually older. To understand the electricity use of internet services, it is important to have accurate estimates for the average electricity intensity of transmitting data through the internet (measured as kilowatt-hours per gigabyte – kWh/GB) and how it develops over time. The electricity intensity of data transmission (core and fixed-line access networks) has decreased by half approximately every 2 years since 2000 in developed countries. And a similar approach needs to be taken when referring to device studies that origins from 2012 and earlier. It’s not only the “internet core” that has gained from extremely increased energy efficiency performances the last decade, handheld devices have also seen a similar development resulting in much lower energy footprint per bit than before.
     
  • Forecasts vs data reviews: Often the types of studies being compared use very different methodologies. Some may be based on academic models while others gather available data from around the world to analyse global trends. While the latter is more time consuming, it is more reflective of the status quo. The former, while helpful in estimating future emissions is based on a range of assumptions and have historically over-inflated the growth of carbon emissions that the sector will be responsible for.
     
  • Boundary issues: Looking at the sector boundaries, ICT is defined to include devices like computers, phones and tablets, regardless of activity, but excludes entertainment and media devices like TVs and gaming consoles. Moving forward, new complexities arise, such as the increasing number of surveillance cameras, and the advent of smart meters and cryptocurrencies, which do not fit clearly into existing industry sector definitions. Another boundary complexity lies within the definition of a footprint which includes not only use but also materials acquisition, manufacturing, transports and end-of-life treatment.
     
  • Electricity usage: Efficient energy use is complex to model as it depends on many parameters such as user profiles, temperature impacts, power supply efficiencies, sleep modes, and many design parameters which all impact the development of the future footprint which makes it hard to scale from the overall development from just one parameter. Assumptions on electricity grid factors (the carbon intensity of the grid) are also an issue. Some studies when projecting forward assume a constant global average electricity grid factor. In practice, grid factors vary significantly by geography, are expected to decrease rapidly, and an increasing number of data centre and telecoms network operators are switching to renewable electricity.

Therefore, in-depth studies and extensive data sets using large samples of measured data are needed to create a better understanding of the sector. Further, these need to be repeated relatively frequently. Until now there has been only a few studies published that are based on actual data and trends and not only modelling, and these studies tells a very different story compared to the extreme figures that are often mentioned. 

 

 

 

 

The techUK podcast - Tech and climate change 

 

techUK · The techUK Podcast Episode 21 - Tech and Climate Change

 

Latest news

All insights

 

techUK newsletters

Sign-up to receive our newsletters covering news, events, training and engagement opportunities across all our programmes exploring tech markets, policy and innovation.

Sign-up here

Get involved

All techUK's work is led by our members - keep in touch or get involved by joining one of the programmes below.

Climate, Environment and Sustainability

We believe that digital tech offers significant opportunities to support the net zero transition, climate adaptation and a heathy and clean environment. We also recognise our own climate and environmental impact, as well as the human rights risks in the tech supply chain, and work closely with members, government, regulators and stakeholders to try and address these and realise the positive benefits of digital tech to be realised as we transition to more sustainable systems and business models.

Data Centres

Data centres provide the core infrastructure that underpins all digital activity across government, business and community. techUK’s award-winning programme provides a collective voice for UK operators. We work with government to improve the business environment for our members. To date we’ve saved UK operators over £150M, alerted them to business risks, mitigated regulatory impacts and raised awareness, most recently negotiating key worker status for the sector. 

Smart Infrastructure and Systems

Our Smart Infrastructure and Systems Programme is the champion for smart infrastructure deployment and governance in the UK, and the economic and societal benefits that smart technologies can deliver. We focus on the innovative application of emerging technologies to traditional forms of infrastructure (such as mobility, energy, water, and the connected home), bringing expert communities together to consider how to reduce costs, increase efficiency and resilience, and deliver better performance.

Become a techUK member

Our members develop strong networks, build meaningful partnerships and grow their businesses as we all work together to create a thriving environment where industry, government and stakeholders come together to realise the positive outcomes tech can deliver.

Learn more

 

Susanne Baker

Susanne Baker

Associate Director, Climate, Environment and Sustainability , techUK

Lucas Banach

Lucas Banach

Programme Assistant, Data Centres, Climate, Environment & Sustainability, Market Access, techUK

Craig Melson

Craig Melson

Head of Digital Devices, Market Access, Environment and Sustainability , techUK