Guest Blog: Satellites to Provide Vital Link to Connected Cars

Terrestrial Wi-Fi and cellular networks support just a portion of the grid that will be required to allow fully autonomous vehicles to navigate city streets and highways. Satellites will play an equally important role in delivering secure software updates and other critical information, such as mapping data, needed for the connected car.

Connected and autonomous vehicles are going to forever change the way we move people and products. The connected environment will also change the way auto manufacturers address vehicle operational improvements, which are increasingly software-driven. The savings available from cutting even a single recall visit over the lifespan of a vehicle provide a compelling argument for enabling connectivity to vehicles.

Cars, trucks and buses that don’t need drivers offer the promise of saving time and money, getting commuters and goods to their destinations faster and more easily, and aiding mobility for disabled and older people. Such Intelligent transport systems and self-driving vehicles are fast moving towards widespread commercialization, with higher levels of automation on the road expected by 2020. Many auto manufacturers and high-technology companies are engaged in experimental testing of autonomous vehicles.

Both passenger safety and network security are paramount for connected and autonomous automobiles. The UK Government Department for Transport will demand failsafe and ubiquitous communication that is more than tamper-resistant because human lives depend on the reliability and security of networks communicating with autonomous vehicles. Satellites are indispensable to providing secure, resilient and ubiquitous wireless connectivity to complement terrestrial communication networks, with notable differences in terms of cyber considerations.

Automotive digital technology historically has been focused on optimizing the internal functions of automotive systems and, more recently, on the use of sensor technologies that monitor and identify objects near vehicles. Attention has now shifted towards developing communication technologies that integrate cars with smart devices via the Internet.

Satellite communications will play an important role in the connectivity and autonomy of intelligent cars with software updates and machine-to-machine (M2M) communications. A key challenge is to create a totally reliable and ubiquitous communication system that is both highly secure and economically viable. At Intelsat, we are closely involved in these initiatives to ensure that intelligent vehicles make the best use of what satellite technology has to offer.

An autonomous vehicle requires two different types of external signal connections. Functions of the car such as steering or braking that need information about other vehicles along a route must rely on terrestrial networks with virtually no signal latency due to the time-sensitive nature of these interactions. Vehicles must react instantly to the proximity of other moving vehicles or stationary objects. Other vehicle functions that need less time-sensitive information can rely on satellites as a medium of communications due to the inherent attributes of satellite technology. For example, satellites can multicast updates to cars concerning road conditions ahead, local imaging of city streets and mapping of selected routes. Such information is necessary to enable the intelligent cars to “make decisions” autonomously as they move from place to place.

These modern and intelligent cars need to have a massive repository of know-how built in them to ensure that they can be autonomous, and this know-how must be continually updated. Satellites are the most reliable, efficient and least expensive means of downloading these massive amounts of data into every car and truck on the highway. In addition, auto manufacturers can use the broadcast capabilities of satellites to update connected car operating software, thereby avoiding costly recalls and updating the software one car at a time at dealerships. Manufacturers will play an important role in the adoption of connected car technology because they will be building flat-panel satellite antennas into the car body when it is on the assembly line.

The key advantages of using satellites to support the connected car include:

  • Global reach -- With a single geostationary satellite it is possible to provide communications downlinks over wide areas, such as entire countries or continents, including in rural areas with no terrestrial connections.
  • Instant service rollout -- Combined with complementary ground networks, satellites ensure that vehicles are connected everywhere. Such coverage is fundamental to vehicle safety because every autonomous vehicle on the highway will be updated at the same time.
  • Globally harmonized spectrum -- By and large, satellite spectrum allocations are globally harmonized. This greatly simplifies the design and implementation of hardware used in cars. More importantly, it allows the cars to be seamlessly and globally interoperable, reducing costs and complexity for the manufacturer.

Using satellites for connected and autonomous vehicles supports a number of the United Nations’ 2030 Global Goals that include cutting in half the number of global deaths and injuries from road traffic accidents by 2020 and providing access by 2030 to safe, affordable, accessible and sustainable transport systems for all.

Satellites will play a vital role as the world’s mobility patterns change from driver-operated to autonomous vehicles. Intelsat will continue to collaborate with its partners to develop the necessary technologies and applications for future intelligent transport systems.

Intelsat - satellite and connected cars


Guest blog by Mohaned Juwad, Senior Manager, Spectrum Policy, Intelsat for techUK's "Good to Great Connectivity for the UK" Week.

Get involved at #ConnectedFuture. More information is available on techUK’s Communications Infrastructure Programme.

Share this

FROM SOCIAL MEDIA

"Technology is a key enabling tool for collaboration within organisations and across the public services ecosystem"… https://t.co/h6SDuy2nQH
Emily Jenkins, Girlguiding Advocate and A-Level student, spoke at #CogX19 during #LTW about why we need to get more… https://t.co/bTSk6v46eE
First tranche of speakers confirmed for our 'going plastic free' conference on 10 July - @OakdeneHollinshttps://t.co/ZtWSnqGyn1
3 Months to go until our fantastic #techUKSmarterState 2019 focusing on how emerging tech will transform public ser… https://t.co/D7ZzGY1XFr
Join us at @Public_SectorUK (25 – 26 June, ExCeL London) & learn how to implement the latest digital solutions and… https://t.co/dhVcra3OWP
ICYMI: During #LondonTechWeek, @PwC_UK published its report into AI in Healthcare, assessing the practicalities of… https://t.co/wDuZyZWlvB
Nominations for the World Class Policing awards close in 2 weeks. You can nominate here - https://t.co/6LpU1bfz5J @WCPAwards
Become a Member
×

Become a techUK Member

By becoming a techUK member we will help you grow through:

Click here to learn more...