Legal Notices

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS SUMMARY.

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

* Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.
Key points

- **Demand will drive data centre needs:** estm. 7.7 Zetabytes per annum by 2017
 - Need to comprehend availability, end user activity, criticality, data integrity and data storage

- **(Maki) Report proposals may result in KPI development delays**
 - Potential conflict with ISO/IEC development in definition and tools
 - Divergent use of industry (including user) resources

- **EU Data Centre Code of Conduct (DC CoC) and The Green Grid (TGG) define best known practices to holistically approach resource efficiency across existing data centres**
 - Expertise in data centres ranging from manufacturers to service providers and users
 - Allows optimization per industry, while also supporting resource efficiency even across critical infrastructures

- **ISO/IEC JTC1 SC39, is developing International Standards on Data Centre Resource Efficiency KPI’s**
 - International contribution from country experts across the EU, Asia, and North America
 - The KPI’s under review include PUE, CUE, WUE, REF (renewable energy), ERE (energy reuse), and IT server efficiency.
 - Technical Reports(TR) harmonizes the approach to resource efficiency across the data centres.

1 Cisco Global Cloud Index Report, 2013
Recommendations

- Harmonize DC resource efficiency KPI development to international standards development (ISO/IEC JTC 1 SC39)
- Establish application methods via The Green Grid
 - Encourage systematic monitoring and assessment to drive resource efficiency improvements
 - Encourage resource efficiency technology development, integration, and adoption through EU Data Centre CoC
- Proliferate best practices through increase adoption of EU Data Centre CoC
 - Adoption of emerging standards
 - Incorporation of TGG maturity model
 - Increased examples in resource efficiency case studies and methodologies
 - maximize output per data centre resource envelope.
- Do NOT aggregate performance indicators
- Advise against product level regulations in the data centre
 - impacts the efficiency of data centres and creates more bottlenecks.
Comments on Report Recommendations

- **KPI option 1: Renewable energy coefficient standard is already being investigated**
 ISO/IEC SC39 is reviewing the option to develop a renewable energy factor. Challenge is to standardize the process to allow for regional differences.

- **KPI option 2: Agreed with the need for at least 3 separate metrics, DCeP, Renewable Energy Factor and KPI for energy reuse. Development timeline is underestimated.**
 Timeline is much further out. Standardization on measurement protocols, and testing methods for the KPI’s will likely take 3-4 years. Recommend using TGG and EU CoC to prove the protocols and methods, while standardization proceeds.

- **KPI option 3: The data center lifecycle “Footprint” combines a number of varying factors that have yet been enumerated.**
 For example the lifecycle of a data center building is 15-20+ years, whereas the IT equipment varies based on the type of data centre and equipment under consideration: e.g. 1-2 Socket servers are transitioning every 3 to 5 years (HPC may be more like 10 years), networking may change every 7 years, online data storage 5-7 yrs, and archives 10+... Recommend: Confirm and focus on the majority mode of carbon expenditures. Current estimates range from 80-90% of the energy consumed by IT equipment is in the use phase.
Backup
Data centres and ITC equipment are part of interconnected network.
Bottlenecks impacts more than just 1 product/system.

Carbon Footprint

Use phase > 80% of carbon footprint
The Green Grid

Driving IT Efficiency Through Collaboration

The Green Grid Mission:
To become the global authority on resource efficiency in information technology and data centers.
The Green Grid is governed by 9 Board Member Companies

~200 Member Entities Worldwide
Summary of NTT case study

• Business continuity - compute and power policy:
 • 80% increase in service availability during grid failure
 • Dynamically provision power to critical compute functions
• Net efficiency with minor performance impact:
 • 27% reduction in server energy consumption.
 • 17% reduction in data center energy consumption
In response to Japan’s power grid situation after the 2011 Earthquake, NTT Data Center operations were able to:

- Extend data centre run time capacity during backup generation from 36hrs to 65hrs
- Balanced extended operating time vs. service response level
- Realized up to 17% energy savings in the data center.

Generator Operating Time

- 140W Limit
- Typical

Survive

Automatically reduce power to extend operations during power or cooling events

How was this done?

- **Server Power Management:**
 - Power Capping
 - Energy proportional computing
- **Server Level Policy manager:**
 - Monitor power, thermal, and workload conditions
 - Automated engine manages compute and power resources
- **Rack Level Policy Manager**
 - Rack capacity
 - Inter-rack workload balance