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Interference and Multiple Access

Interference Physical scarcity

How to efficiently serve multiple wireless users, devices, services ?



Multiple Access Techniques
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OMA: eliminate multi-user interference by allocating orthogonal radio resources.



Multiple Access Techniques

| soMA NoMA
Orthogonality A Non-orthogonality

{ Space division multiple access (SDMA): \
* Multiplex users in spatial domain using multi-user linear precoding
(MU-LP)

* Used in multiuser / massive / millimeter-wave / network-MIMO
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SDMA: manage multi-user interference by spatial precoding at the transmitter
and fully treating interference as noise at receivers.




OMA

Multiple Access Techniques
NOMA _
Non-orthogonality

\

{ Power-domain non-orthogonal multiple access (NOMA): \
* Use power domain to break the orthogonality
* Apply superposition coding (SC) at the transmitter and successive
interference cancellation (SIC) at each receiver
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NOMA: manage multi-user interference by fully decoding interference at
receivers.




Multiple Access Techniques

Orthogonal vs. Non-Orthogonal: not the problem!
* SDMA (4G/5G) is non-orthogonal: users interfere

The real problem: how is interference managed
* OMA: no interference
 SDMA: treat interference as noise
 NOMA: fully decode interference

Lessons from Information Theory: [Etkin, Tse, Wang, |IEEE TIT 2008]
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Rate Splitting Multiple Access

Rate Splitting Multiple Access (RSMA) a general, flexible and robust multiple access [1]

General with existing multiple access
OMA, SDMA, NOMA subsets of RSMA

Flexible to various levels of interference
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Robust to channel state information (CSI) uncertainty: information theoretic optimal!
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RSMA: Two-User Example
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Mapping of Messages to Streams

as noise by the other user

decoded by its intended user and treated decoded by both users

RS is a more general framework: RS > SDMA/OMA/NOMA/Multicast
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Spectral Efficiency: Rate Region — perfect CSI

Optimization results with perfect CSIT: max Zkuk Ry,

M = K = 2, SNR = 20 dB, 10 dB average channel gain difference.
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RSMA generalizes and outperforms SC-SIC (NOMA) and MU-LP (SDMA).
RSMA achieves a rate region closer to the capacity region.
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Spectral Efficiency: Rate Region — imperfect CSI

Two-user ergodic rate regions with M = K = 2, imperfect CSIT (¢ = 0.6), SNR = 20 dB:
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RS schemes outperform conventional NoRS, i.e.,
SDMA/MU-LP/MU-MIMO, NOMA and DPC!
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Spectral Efficiency: QoS constraints

Optimization results: 10-user weighted sum rate with QoS, M = 2
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Huge gains with RS (1 SIC layer) vs. NOMA (9 SIC layers!)
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Spectral Efficiency: Max-Min Fairness

Optimization results: max min R,

M =4,K=6,SNR = 20 dB, 10dB path loss difference.
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Huge gains with 1-layer RS: rate, fairness and robustness
enhancements with only 1 SIC! 3



Spectral Efficiency: TDD Massive MIMO

Link-level simulation with OFDM waveform and 3GPP channel model
(M = 32,K = 8, 10ms feedback delay): Delay 10 ms

-

CSl acquisition  Data transmission
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RSMA maintains multiuser connectivity in mobility conditions.
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Energy Efficiency

2 Ri
P+P.

Optimization results: max

* M=K=2,P.=33dBm, 10dB
average channel gain difference.

* Achievable energy efficiency averaged
over 100 random channel realizations:
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RS schemes offers higher energy efficiency than SDMA and NOMA
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Coverage
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Joint Communication and Radar

How to make the best use of the spectrum for the dual purpose of radar and
communication?

Find the multiple access strategy that achieves the best trade-off between
communication and radar performance.
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RSMA efficiently manages radar-communication interference
and achieves better tradeoff.
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Future Challenges

A gold mine of research problems for academia and industry:
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Multi- performance
< user/multi-cell analysis
multi-antenna -
networks /\

Satellite
networks

Fundamental Future Implementation
Cellular and
limits of Research Networks )
. standardization
wireless

networks
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Conclusions

General Observations of RSMA:

Partially decode interference, partially treat interference as noise
Robust interference management strategy

Flexible non-orthogonal transmission strategy

General and unified multiple access

Significant performance benefits

* SE, EE, coverage, QoS, fairness, robustness, feedback overhead
reduction, complexity reduction, lower latency

Numerous applications: eMBB, URLLC, mMTC, and new services

e joint sensing/radar and communications, integrated cellular and
satellite communications
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IEEE ComSoc Special Interest Group on RSMA

& IEEE  ComSoc WIC SIG RSMA

Welcome to the IEEE ComSoc WTC Special Interest Group on:

RATE SPLITTING MULTIPLE
ACCESS (RSMA)

Link: https://sites.qgoogle.



https://sites.google.com/view/ieee-comsoc-wtc-sig-rsma/home

