

Cells Sweeping A New Paradigm for Cells Deployment Dr. Atta ul Quddus, Rúben Borralho, Dr. Abdelrahim Mohamed, Institute for Communication Systems Home of 5G / 6G Innovation Centre University of Surrey

Radio Access Network Techniques for 6G workshop Supported by DCMS and UK SPF 1st July 2021

1st July 2021

5GIC & 6GIC

Problem – Coverage is Patchy & Non-Uniform

- Coverage imbalance / dead-spots is an inherent problem in cellular systems
- Typical sectored antennas do not favour users at the cell edges of same site!

Wideband SINR 2D Geographic heat map

7 Sites, 3 sectors BS Tx Power: 46 dBm System Bandwidth: 10 MHz Path Loss Model: 3GPP Urban Macro BS Antennas Model: (Berger 2D as per 3GPP TS 36.942) Shadowing: Claussen (Correlated) Inter-site Distance: 500 m Fading: Typical Urban, 5 km/h Carrier Freq: 2.1 GHz Frequency reuse factor: 1

 $\begin{array}{l} \textbf{Red} \rightarrow \text{High SINR} \\ \textbf{Blue} \rightarrow \text{Low SINR} \end{array}$

Densification is Not Always the Answer!

Proposed Solution - Autonomous Cells Sweeping

Allow cells to start Sweeping: all cells sweep in Azimuth from 0 to 360 degrees to provide Uniform Coverage

5.6G

CENTRE UNIVERSITY OF SURREY

INNOVATION

What happens with Autonomous Cells Sweeping?

- More Uniform Coverage is achieved, coverage dead-spots are reduced
- Cell-edge (5th percentile) throughput is significantly enhanced

A. Quddus, A. Mohamed, R. Borralho, M. Khalily, and R. Tafazolli, "Electrically Rotating Base Station Sectors for Uniform Coverage and Cell Edge performance in Mobile Wireless / Cellular Systems," Patent filled, Application Number 2005722.0.

<u>Configuration</u>:

- 7 Sites with 3 sectors each (i.e. 21 cells)
- eNodeB TxPower: 46 dBm
- 50 users/cell
- 400 TTI simulation
- 30 laps of full sweeps
- System Bandwidth: 10 MHz

Configuration:

- Path Loss Model: "TS 36.942" Path Loss Model
- Base Station Antenna Model: Berger 2D
- Shadowing Model: Claussen
- Inter-site Distance: 500 m
- **Traffic Model:** full Buffer
- Fast Fading Model: Typical Urban (TU), 5 km/h
- LTE TM1: SISO

Wideband SINR and Proportional Fair (PF) UE Throughput Results²²

Standard deviation of Shadowing: 8 dB

5•6G

INNOVATION CENTRE

Gains increase with Shadowing

5th Percentile and Average UE Throughput Improvement Proportional Fair

Standard deviation of Shadowing: 8 dB

Standard deviation of Shadowing: 12 dB

Modulation Coding Index (MCI) Distribution

Channel Quality Indicator (CQI)					
5th Percentile		Mean			
Static	Full Sweep	Static	Full Sweep		
3	5 (+2)	8	10 (+2)		

Mod / Cod CQI Index	Modulation	Code Rate	
1	QPSK	0.101449	
2	QPSK	0.101449	
3	QPSK	0.162319	
4	QPSK	0.318841	
5	QPSK	0.442210	
6	QPSK	0.568116	
7	16QAM	0.365217	
8	16QAM	0.469565	
9	16QAM	0.563768	
10	64QAM	0.484058	
11	64QAM	0.600000	
12	64QAM	0.692754	
13	64QAM	0.760870	
14	64QAM	0.888406	
15	64QAM	0.888406	

Throughput Distribution

Static

Cell Sweeping

Standard deviation of Shadowing: 8 dB

Realistic LTE Link Budget with Cell Sweeping

Downlink Parameter	Value [units]	Okumara – Hata Propagation	Value [units]
Data Rate	1 Mb/s	Model	
Tx Power	46 dBm	Base Station Height	15 m
BS Antenna Gain Boresight	15 dBi	Mobile Station Height	1.5 m
Cable Loss	2 dB	Shadowing Standard Deviation	8 dB
Receiver Sensitivity	- 106.5 dBm	Propagation Loss Exponent, n	3.7
Interference Margin	4 dB	Location / Cell Area Reliability	95 %
UE Antenna Gain	0 dBi	Fade Margin	8.8 dB
Cell Sweeping Gain	0 dB [Static Deployment] 2.1 dB [Cell Sweeping]	Carrier Frequency	2.1 GHz
(@ 5 th percentile of SINR)		Indoor Loss	18 dB
Maximum Allowable Path Loss	161.5 dB [Static Deployment] 163.6 dB [Cell Sweeping]	Cell Range, R	0.711 km [Static Deployment] 0.809 km [Cell Sweeping]

With cell sweeping, **98 metre (roughly 100 metres)** increase in cell-radius can be achieved which is about **14%** increase!

- 14% increase in cell radius translates into roughly 30% increase in cell area
- Hence, to cover a certain geographic area X square kilometres, 30% less cells are required.
 - Direct cost savings to the operators
 - Reducing energy consumption
- It should be noted that this is the minimum increase, with advanced versions of cell sweeping, more gains are possible!

Some Practical Aspects – Partial Sweep

Full Sweep

60° Sweep

Cheap Practical Implementation – Electrically Steerable Antenna

- Our novel antenna design allows BS antennas to be upgraded rather than replaced in a cost-effective manner
- No need for complex feeding network design or addition of extra hardware
- We add parasitic elements on both sides close to the main structure of antenna to be excited by the fringing field of main structure
- We can use pin diodes to turn off and turn on these parasitic elements to shape the beam to either left or right of azimuth boresight

Conclusions

Cell Sweeping is a novel cells deployment method that results in:

- Uniform and fair distribution of capacity irrespective of user location
- Cell edge problem is substantially reduced
- ✤ Increase in cell-range and cell-area
- Decrease in number of cells by a minimum of 30%
- Principle apply to MIMO / mmWave etc.
- ✤ What changes are required:
 - Upgrade Antennas to electrically sweeping beams
- Cell Sweeping does not affect the digital baseband, it is an RF level technique, hence applicable to existing cellular (3G / 4G / 5G), as well as to future networks.

Thank You