Autonomous Spectrum Awareness for Smart Spectrum Access and Sharing

Miguel López-Benítez

Department of Electrical Engineering and Electronics University of Liverpool, United Kingdom <u>M.Lopez-Benitez@liverpool.ac.uk</u>

6G: Software Defined Radio and RF Sampling, 16 September 2021

Current spectrum landscape

Lower bands	cm/mm-Wave bands	THz bands
Good propagation Wide area coverage Bandwidth ~ 10-100 MHz Datarate ~ 10-100 Mbps	5Hz 100 Limited propagation Reduced area coverage Bandwidth ~ 100-1000 MHz Datarate ~ 100-1000 Mbps	GHz Poor propagation Small area coverage Bandwidth ~ GHz Datarate ~ Gbps

- Spectrum use is worth well over £50bn a year to the UK economy.
- The most important resource of wireless communication systems.
- Desirable spectrum (sub-6 GHz) is crowded with legacy systems.
- Deployment of new systems:
 - Higher frequency bands
 - Sharing of lower spectrum

What spectrum band?

What spectrum band?

- Many 6G applications will require higher capacity \rightarrow mmWave/THz bands
- Many 6G applications will still require wide coverage \rightarrow sub-6 GHz
- Sub-6 GHz spectrum remains critically important
 - Spectrum sharing is the way forward to further exploit sub-6 GHz spectrum
- Unique opportunity to also embed spectrum sharing in higher frequency bands
- Long history of spectrum sharing Regulators' fears overcome (WRAN, LSA/ASA, CBRS, 5G NR-

	Spectrum sensing	Geolocation databases
Infrastructure complexity/cost	Low	High
Terminal complexity/cost	High	Medium
Legacy compatibility	High	Medium/Low
Reliability	Low/Medium	High
Spectrum dynamism	High	Low
Need for external system/provider	No	Yes
Need for additional spectrum	No	No
Specific issues	Time and energy consumption	Positioning system

- Databases seem to have been a preferred option (WRAN, LSA, CBRS)
- Local sensing seen as a secondary/complementary requirement
- What about local sensing <u>only</u>? → **Autonomous spectrum awareness**

Autonomous spectrum awareness

Autonomous spectrum awareness

Two-layer smart spectrum access (based on spectrum sensing)

K. Umebayashi, Y. Tamaki, M. López-Benítez, J. J. Lehtomäki, "Design of spectrum usage detection in wideband spectrum measurements", IEEE Access, August 2019

6G: Software Defined Radio and RF Sampling, 16 September 2021

Estimation of statistics based on sensing UNIVERSITY OF

• How do we estimate spectrum activity statistics from sensing?

- 1) Sense the channel with a given sensing period (T_s)
- 2) Decide channel states \rightarrow Idle (H_0) or Busy (H_1)
- 3) Estimate individual period durations (T_i)
- 4) Compute activity statistics from sequence of estimated periods: Min/max period, mean & variance (moments), distribution

Sources of inaccurate awareness info

- Finite sensing period:
 - Fundamental limit to the time resolution to which idle/busy periods can be observed
 - Estimated periods are integer multiples of the sensing period
 - True periods have in general a continuous domain

M. López-Benítez, A. Al-Tahmeesschi, D. K. Patel, J. Lehtomäki, K. Umebayashi, "Estimation of primary channel activity statistics in cognitive radio based on periodic spectrum sensing observations," IEEE Trans Wireless Comms, February 2019

Limited number of observations:

- Activity statistics need to be computed based on a reduce set of period durations

A. Al-Tahmeesschi, M. López-Benítez, D. K. Patel, J. Lehtomäki, K. Umebayashi, "On the sample size for the estimation of primary activity statistics based on spectrum sensing," IEEE Trans Cognitive Comms and Networking, March 2019

Sources of inaccurate awareness info

• Imperfect sensing performance:

O. H. Toma, M. López-Benítez, D. K. Patel, K. Umebayashi, "Estimation of primary channel activity statistics in cognitive radio based on imperfect spectrum sensing," IEEE Trans Comms, April 2020

Approaches for autonomous spectrum awareness

• Approach 1: Reconstruction algorithms

O. H. Toma, M. López-Benítez, D. K. Patel, and K. Umebayashi, "Reconstruction algorithm for primary channel statistics estimation under imperfect spectrum sensing", IEEE WCNC 2020

• Approach 2: Mathematical analysis

$$\begin{array}{l} X & & \quad \text{Wireless channel} & \quad \text{Spectrum detection} & & X \\ \\ \breve{X} & = f\left(X, T_{s}, P_{fa}, P_{md}, N\right) \\ \\ \\ \widetilde{X} & = f^{-1}\left(\breve{X}, T_{s}, P_{fa}, P_{md}, N\right) \approx X \end{array}$$

M. López-Benítez, A. Al-Tahmeesschi, D. K. Patel, J. Lehtomäki, K. Umebayashi, "Estimation of primary channel activity statistics in cognitive radio based on periodic spectrum sensing observations," IEEE Trans Wireless Comms, February 2019

A. Al-Tahmeesschi, M. López-Benítez, D. K. Patel, J. Lehtomäki, K. Umebayashi, "On the sample size for the estimation of primary activity statistics based on spectrum sensing," IEEE Trans Cognitive Comms and Networking, March 2019

O. H. Toma, M. López-Benítez, D. K. Patel, K. Umebayashi, "Estimation of primary channel activity statistics in cognitive radio based on imperfect spectrum sensing," IEEE Trans Comms, April 2020

Deep learning

LIVERPOOL

• Approach 3: Deep learning

O. H. Toma, M. López-Benítez, "Traffic Learning: a Deep Learning Approach for Obtaining Accurate Statistical Information of the Channel Traffic in Spectrum Sharing Systems", IEEE Access, September 2021

A. Al-Tahmeesschi, K. Umebayashi, H. Iwata, J. Lehtomäki, M. López-Benítez, "Feature-Based Deep Neural Networks for Short-Term Prediction of WiFi Channel Occupancy Rate," IEEE Access, June 2021

TABLE 6. Computation time (in seconds) required by each approach to provide 100 estimations for different statistical metrics.

Approach	Mean	Variance	Minimum	Distribution
Closed-form	0.037	_	0.001	0.52
expressions	0.057			0.52
Reconstruction	200.7	243	266.8	280
algorithms	200.7	243	200.8	200
Deep Learning	0.4	0.42	0.47	1.7
+ training	50.8	51.4	50.74	162.1

Experimental validation

O. H. Toma, M. López-Benítez, "USRP-Based Prototype for Real-Time Estimation of Channel Activity Statistics in Spectrum Sharing", IEEE ISWCS 2021 Available: <u>https://github.com/ogeen-toma/USRP-prototype-for-channel-statistics-estimation</u>

Experimental validation

Use case – Practical application

Mobile networks in WiFi unlicensed spectrum (LAA)

- 3GPP Cat 4 LBT does not meet "fairness" requirements
- Fairness can be achieved by adjusting waiting times based on WiFi activity statistics (FWT method)
- Aggregated capacity can be maximised by adjusting transmission times based on WiFi activity statistics (DynTxOP method)

M. Alhulayil, M. López-Benítez, "Novel LAA waiting and transmission time configuration methods for improved LTE-LAA/Wi-Fi coexistence over unlicensed bands", IEEE Access, September 2020

for your attention !

6G: Software Defined Radio and RF Sampling, 16 September 2021

IEEE Open Journal of Vehicular Technology

Call for Papers for Special Issue on

Smart and Flexible Spectrum Technologies for

Next Generation Wireless Communication Systems

Manuscript submission:	<u>November 1, 2021</u>
First review completed:	December 15, 2021
Revised manuscript due:	January 15, 2022
Final editorial decisions:	February 1, 2022
Final manuscript due:	February 15, 2022
Final publication:	Quarter 1, 2022