Autonomous Spectrum Awareness
for Smart Spectrum Access and Sharing

Miguel Lopez-Benitez
Department of Electrical Engineering and Electronics
University of Liverpool, United Kingdom
M.Lopez-Benitez@liverpool.ac.uk

P&’d UNIVERSITY OF

& LIVERPOOL

6G: Software Defined Radio and RF Sampling, 16 September 2021



mailto:M.Lopez-Benitez@liverpool.ac.uk

d UNIVERSITY OF

Current spectrum landscape & 1 IVERPOOL
1 GHz 100 GHz
Good propagation Limited propagation Poor propagation
Wide area coverage Reduced area coverage Small area coverage
Bandwidth ~ 10-100 MHz Bandwidth ~ 100-1000 MHz Bandwidth ~ GHz
Datarate ~ 10-100 Mbps Datarate ~ 100-1000 Mbps Datarate ~ Gbps

e Spectrum use is worth well over £50bn a year to the UK economy.
* The most important resource of wireless communication systems.
* Desirable spectrum (sub-6 GHz) is crowded with legacy systems.

 Deployment of new systems:
— Higher frequency bands
— Sharing of lower spectrum
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A
Spectrum
A THz bands (100-1000GHz)
100 GHz = Unprecedented bandwidths = High data rates
‘ Unused spectrum (free capacity & easy exploitation)
S0 GHzI W 30.100 Unfavourable propagation = Very short coverage
mm W Unreliable links > Momentary unavailability (URLLC)
30 GHz Availability/deployment: Medium / long-term
28 GHz -
cmWave (6-30GHz)
6 GHz v
A Limited RF bandwidth (and data rates)
Crowded (limited capacity & difficult exploitation)
35GHz — (<6GHz) Favourable propagation = Longer coverage
1GHz|— More reliable links (and communications)
| | | ] ]

Availability/deployment: Now! / short-term

<€

see 2016 2017 2018 2019 2020
Source: Feng Hu et al., IEEE Access, vol. 6, Feb. 2018 (adapted)

What spectrum band?
— Many 6G applications will require higher capacity - mmWave/THz bands
— Many 6G applications will still require wide coverage — sub-6 GHz

e Sub-6 GHz spectrum remains critically important
— Spectrum sharing is the way forward to further exploit sub-6 GHz spectrum

* Unigue opportunity to also embed spectrum sharing in higher frequency bands
* Long history of spectrum sharing — Regulators’ fears overcome (WRAN, LSA/ASA, CBRS, 5G NR-

1)

)
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Spectrum awareness approaches LIVERPQQL
Spectrum Geolocation
sensing databases
Infrastructure complexity/cost Low High
Terminal complexity/cost High Medium
Legacy compatibility High Medium/Low
Reliability Low/Medium High
Spectrum dynamism High Low
Need for external system/provider No Yes
Need for additional spectrum No No
e Time and energy ~ Positioning
Specific 1ssues . =
consumption system

» Databases seem to have been a preferred option (WRAN, LSA, CBRS)
* Local sensing seen as a secondary/complementary requirement
 What about local sensing only? — Autonomous spectrum awareness
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Legacy network :ZZC,:;‘:,TV Mobile network monitoring
pattern spectrum occupancy pattern
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Short-term
decisior 000 Real-time Spectrum
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Long-term
decisions ec“\,«\\l :vanced (statistical)
:cc\,“:’:\‘;s data analysis
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Two-layer smart spectrum access
(based on spectrum sensing)

Lo BT sy

Spectrum measurement Prior information

Autonomous Spectrum Awareness System

Signal acquisition Spectrum usage
g 9 [ 98 Modeling
& spectrum ana]yam detection
I a| Signal
nsin
Sensing detection

K. Umebayashi, Y. Tamaki, M. Lépez-Benitez, J. J. Lehtomaki, "Design of spectrum usage
detection in wideband spectrum measurements”, IEEE Access, August 2019

Statistics &
activity model
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Estimation of statistics based on sensing ¥ [ 1VERPOOL

* How do we estimate spectrum activity statistics from sensing?

1) Sense the channel with a given sensing period (T)
2) Decide channel states = Idle (H,) or Busy (H,)
3) Estimate individual period durations (T))

4) Compute activity statistics from sequence of estimated periods:
Min/max period, mean & variance (moments), distribution
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* Finite sensing period:
— Fundamental limit to the time resolution to which idle/busy periods can be observed
— Estimated periods are integer multiples of the sensing period
— True periods have in general a continuous domain

N\ N\ N\

T 1 T 0 T 1
M. Lépez-Benitez, A. Al-Tahmeesschi, D. K. Patel, J. Lehtomaki, K. Umebayashi, "Estimation of primary channel activity statistics in
cognitive radio based on periodic spectrum sensing observations," IEEE Trans Wireless Comms, February 2019

 Limited number of observations:
— Activity statistics need to be computed based on a reduce set of period durations

ol A - [

A. Al-Tahmeesschi, M. Lopez-Benitez, D. K. Patel, J. Lehtomaki, K. Umebayashi, "On the sample size for the estimation of primary
activity statistics based on spectrum sensing," IEEE Trans Cognitive Comms and Networking, March 2019

6G: Software Defined Radio and RF Sampling, 16 September 2021 8



Sources of inaccurate awareness info

’&’] UNIVERSITY

G LIVERPOOL

* Imperfect sensing performance:
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0. H. Toma, M. Lopez-Benitez, D. K. Patel, K. Umebayashi, "Estimation of primary channel activity statistics in cognitive radio based on

imperfect spectrum sensing," IEEE Trans Comms, April 2020
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Channel traffic
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Approaches for autonomous spectrum awareness
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* Approach 1: Reconstruction algorithms

Iy, Tg<pyTc<p;, Tp I
T+ T+ T . Ip . I
e e
@isafalse negative ——————>
T, Tg+Tc+Tp Ty

»le alg
Pre Pre
T T

@ is a false positive ———v>

0. H. Toma, M. Lopez-Benitez, D. K. Patel, and K. Umebayashi, "Reconstruction algorithm for primary channel statistics estimation
under imperfect spectrum sensing", IEEE WCNC 2020
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* Approach 2: Mathematical analysis

X 4>[ Wireless channel H Spectrum detection ]—>X

X = f(X,Ts, Prq, Pa, N)

(X, Ts, Prg, Ppa, N) = X

M. Lopez-Benitez, A. Al-Tahmeesschi, D. K. Patel, J. Lehtomaki, K. Umebayashi, "Estimation of primary channel activity statistics in
cognitive radio based on periodic spectrum sensing observations," IEEE Trans Wireless Comms, February 2019

A. Al-Tahmeesschi, M. Lopez-Benitez, D. K. Patel, J. Lehtomaki, K. Umebayashi, "On the sample size for the estimation of primary
activity statistics based on spectrum sensing," IEEE Trans Cognitive Comms and Networking, March 2019

O. H. Toma, M. Lépez-Benitez, D. K. Patel, K. Umebayashi, "Estimation of primary channel activity statistics in cognitive radio based
on imperfect spectrum sensing," IEEE Trans Comms, April 2020
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* Approach 3: Deep learning
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0. H. Toma, M. Lopez-Benitez, "Traffic Learning: a Deep Learning Approach for Obtaining Accurate Statistical Information of the
Channel Traffic in Spectrum Sharing Systems", IEEE Access, September 2021

A. Al-Tahmeesschi, K. Umebayashi, H. lwata, J. Lehtomaki, M. Lopez-Benitez, "Feature-Based Deep Neural Networks for Short-Term
Prediction of WiFi Channel Occupancy Rate," IEEE Access, June 2021
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PC o H ﬂ H PR —. =

Transmltter program Receiver program

USRP-TX USRP-RX
(PU) (SU)

Generate a PU
traffic activity

asn
asn

sensing estimation

EL Spectrum , Statistics E

Receiver (RX)

Transmitter (TX)

File Help File Help
Load or Generate idle/busy periads: Generate v Receprian Time (s): 200.0
Save Periods: Yes v Sensing Time Ts (ms): 100.00
Number of idla/busy Periods: 100 = Sensing event duration tau (ms): 0.100
Decision Threshald: 0.050
Distribution of idle periods: Generalised Pareto | v ccision Thresho
Display energy of detection (in real-time): |Yes v
mu: |0.2000 | 2| lambda:|0.2400 ;| alpha: [0.2000 |7
Display Statistics: Yes 7
S Ei Values: Yes v
Distribution of busy periods: Generalised Pareto | + sveknergy Values
show Detected Periods: Yes
mu: [0.2000 | ;| lambda:|p 2400 2| alpha: |0.z000 |2
USRP Device (Serial Mumber): 3194744
Show Transmitted Periods: Yes v Center Frequency (MHz): 2462.00
: 5 (70 MHz - 6 GHz)
USRP Device (Serial Mumber): 3194738
Center Frequency (MHz): 2462.00 = Sample Rate (MHz): 56.00
(70 MHz - 6 GHz) (200 kHz - 56 MHz)
Sample Rate (MHz): 56.00 Gain (dB): 45.0
(200 KkHZ - 56 MHZ) (0 dB - 89.5 dB)
Gain (dB): 45.0 - Bandwidth (MHz): 1.00
(0 dB - 89.5 dB) (200 kHz - 56 MHz)
R W Start Transmitting (TX) Start Detection (RX)
USRP B200mini USRP B200mini
(a) Transmitter GUT (b) Receiver GUT

O. H. Toma, M. Lépez-Benitez, "USRP-Based Prototype for Real-Time Estimation
of Channel Activity Statistics in Spectrum Sharing", IEEE ISWCS 2021
Available: https://github.com/ogeen-toma/USRP-prototype-for-channel-statistics-estimation
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Experimental validation

nergy value

E

Duty cycle of the periods

6G: Software Defined Radio and RF Sampling, 16 September 2021

RX_USRP (B200mini)

"

‘ oy L v J I L L ——

e
&2

/

LN EVEE RS D T @ik

LIVERPOOL

Mean of the busy periods
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* Mobile networks in WiFi unlicensed spectrum (LAA)

100 , ‘ ' "» 180 ‘ ‘ -
) I Reference [ JFWT .g- |I3GPP Cat 4 LBT [_JFWT I DynTxOP|
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= ] 21201
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= o
= 50+ E
[ s 80F
— 40t o
= S 60 |

30 2 . & ‘

0.5 1.5 2.5 0.5
A (packets/second) A ( packets/second

» 3GPP Cat 4 LBT does not meet “fairness” requirements

» Fairness can be achieved by adjusting waiting times
based on WiFi activity statistics (FWT method)

» Aggregated capacity can be maximised by adjusting transmission times
based on WiFi activity statistics (DynTxOP method)

M. Alhulayil, M. Lépez-Benitez, "Novel LAA waiting and transmission time configuration methods for improved LTE-LAA/Wi-Fi
coexistence over unlicensed bands", IEEE Access, September 2020
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