

Cluster 1 and 3 Rural Spectrum Supply Oct 18th, 2021 Peter Curnow-Ford

Agenda

- Rural Spectrum
- Types of spectrum
- Current use cases
- Summary

Rural Spectrum

Past

- Characteristic challenges
 - Distance
 - Terrain
 - Foliage
 - Weather (backhaul)
- Low mobility, speeds and density

Future

- High speed
- Clumps of density eg villages plus corridors
- Fixed and mobile services, IoT

- Lowband, <1GHz, in great demand, limited availability
- Midband, 1 <= 6GHz, previous little use, now in great demand, limited availability
- Highband previously only for backhaul, now seen as viable for access (eg FWA)
- Rural offers chance of overlap, ie not contiguously used, can the N=x factor be increased or new models introduced for sharing

- Rural Mobility
 - Low or midband ideal, gives range and speed => 4G and 5G
- Rural Broadband FWA
 - Midband, using mMIMO, >30 to 300Mbps fibre substitute
 - Highband, 26 or 28GHz using 5G FWA, eg US Cellular
 - Ericsson gNB, 7km and > 1Gbps
 - Nokia gNB, InSeego outdoor modem, >9km and ~ 1Gbps
- Radical shift in requirements
- Need to re-visit how rural spectrum is optimised to meet need

- Past rural long distance, low speeds, islands
- Now dense clusters and corridors, high speeds, fixed equivalent
- mMIMO and mmWave very applicable
- Spectrum sharing, dynamic allocation and high re-use needed to make more efficient use