

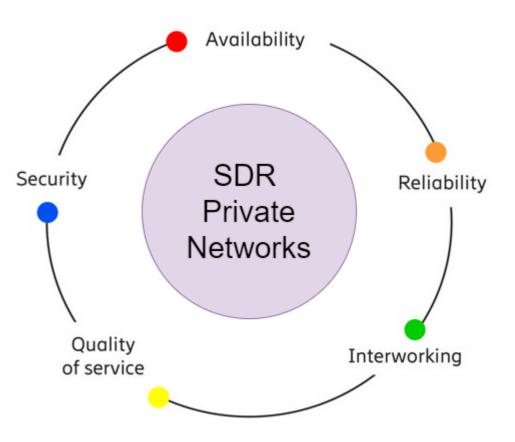
5G/6G Private Networks for Vertical Markets: Just Add Some SDR and Spectrum

Dani Anderson

in https://www.linkedin.com/in/danianderson92/

16th Sept 2021, DCMS-SPF 6G Spectrum Initiative

Introduction


- StrathSDR team have deployed a number of demonstrator networks implementing a common SDR-based architecture.
 - Targeting Shared Spectrum and Pioneer Spectrum
- Common SDR infrastructure platform, but differing performance criteria for different verticals.
 - Security
 - Uplink speed optimisation
 - Device density
- We are SDR now at 'Split-8', but evolving (where appropriate) to O-RAN / other Lower Layer Splits (e.g., Split 7-2)
- 6G will require new spectrum access strategies to facilitate more economic deployments and more effective spectral usage.
 - Low/Mid band frequencies will be critical for both coverage and capacity.

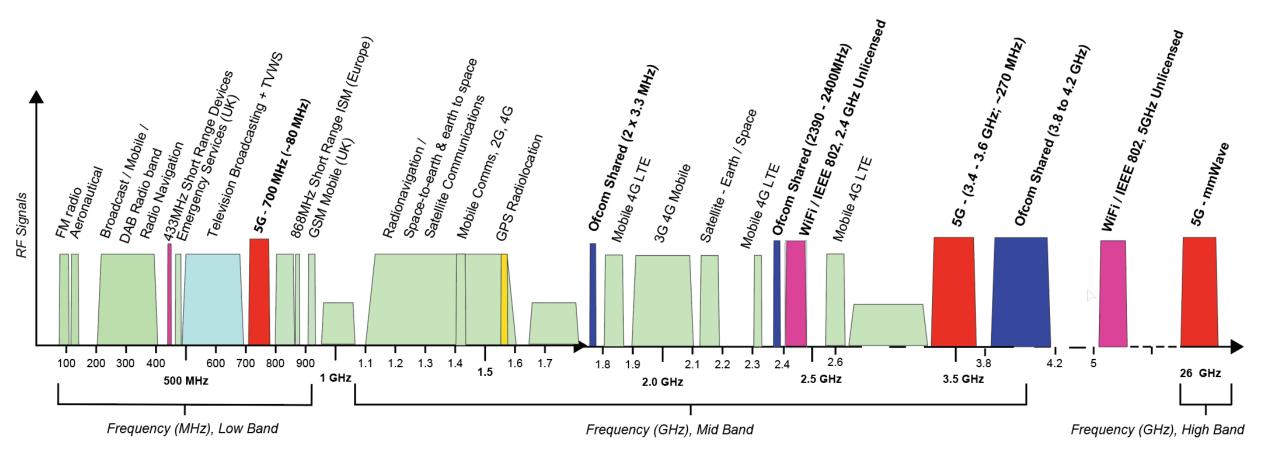
Private Networks – Flexible and Scalable with SDR

StrathSDR

Motivation for Private Network Deployments


- Private networks highly customable connectivity solutions, tailored to address the vertical market requirements.
- Particularly relevant for use cases and applications that require custom features.
- Software Defined Radio (SDR)
 - Cost effective platforms that enable reconfigurable, frequency agile deployments.
- An SDR-enabled RAN can support multiple technologies using the same network infrastructure.
 - 5G New Radio (NR), LTE, NB-IoT, and LTE-M

Private Networks – Flexible and Scalable with SDR


Current Architectures for 5G

- Distributed Architecture
 - Baseband Unit (BBU) + SDR Remote Radio Head (RRH)
- Multiple use cases and applications, covering multiple different industry verticals.
- A common base of:
 - Commercial-Off-The-Shelf (COTS) Compute Platform
 - SDR RRH powered by Xilinx FPGAs / SDR
 - Shared Spectrum

Licensed, Unlicensed & Shared – What's Available (now)?

- Licensed: Paid for or allocated by Ofcom for key service.
- Unlicensed: Open to all use within the agreed rules (Wi-Fi).
- Shared Bands: Use within rules Ofcom allocation, light licensing.

StrathSDR

Shared Spectrum – Is there enough?

We need more for 6G!

NR N77	3300-4200 Uplink and Downlink							
Shared Spectrum Access			3800)-4200				
LTE B40	2300-2400 Uplink and Downlink							
Shared Spectrum Access		2390-2400						
LTE B3		5-1805	1805-1880					
LIL D5	Uplink Duplex	x Space	Downlink					
Shared Spectrum Access	1781.7-1785			1876.7-1880				

"The traditional model of static frequency allocation is not sufficient, and a new model is needed to address the growing demand for access..."

US Department of Defense (DoD), Sept 2020

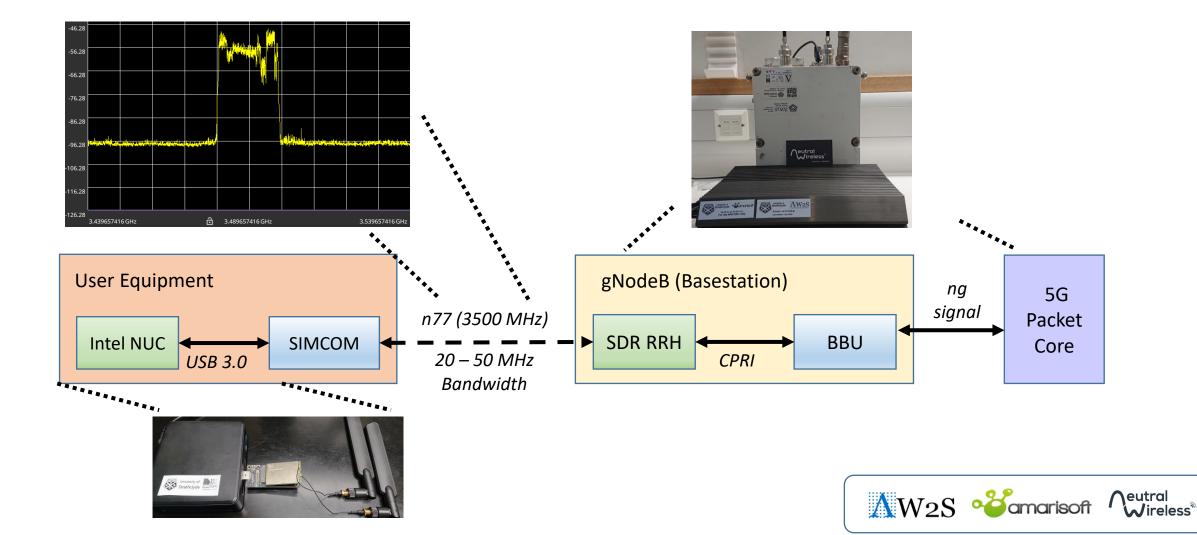
"Sharing is becoming a necessity" Andrew Clegg,

Spectrum Engineering Lead at Google, Sept 2021

"Spectrum sharing must be the new normal"

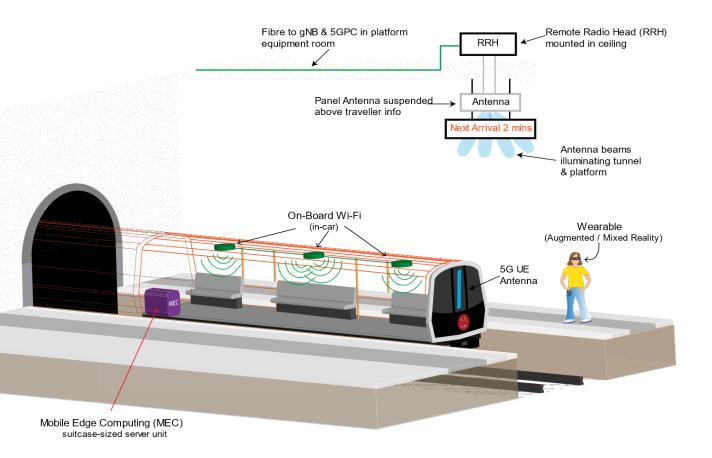
Vernita Harris,

Director of Spectrum Policy, US DoD, Sept 2021


https://tinyurl.com/SpecShare

https://tinyurl.com/SharedDoD

Private 5G Standalone Networks – Common Platforms


End-to-End Connectivity...with SDR driving RRH, BBU and UEs

5G RailNext

In Tunnel, On-Train, Private Spectrum 5G SA Network

- UK and South Korea collaboration
- Immersive infotainment services.
 - Augmented Reality / Mixed Reality AR/VR and Wearable technology.
- 5G SA track-to-train connectivity demonstrated in the Glasgow Subway using mid-band pioneer spectrum.
 - Critical Performance Criteria: High Throughput and Resilience

DANKOOK UNIVERSIT

5G for Remote Broadcast and Production

World's First 5G SA Network for Sports Broadcasting

News 🗎 AUTHOR motogp.com PUBLISHED 5 days ago

World's first stand-alone 5G network introduced in MotoGP^{**}

At the British GP, BT Sport, Dorna, Vislink & the University of Strathclyde showcased a private stand-alone 5G network

https://tinyurl.com/Silverstone5G

- Early stage PoC for 5G Remote Production capabilities, with mid-band shared spectrum & SDR solutions
- air demonstration l ive at to Silverstone – Aug 2021

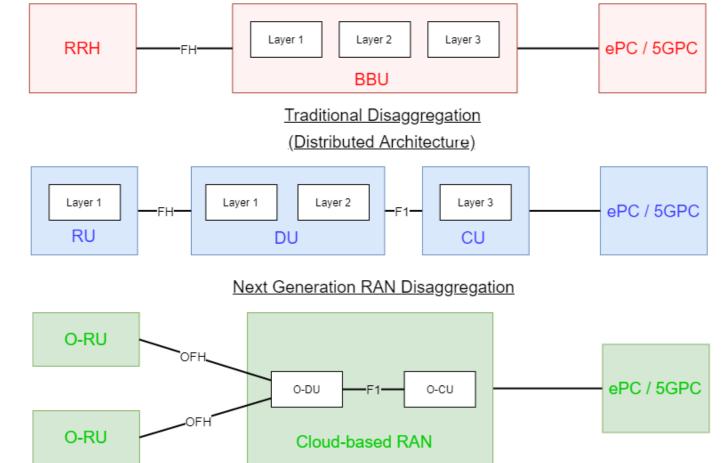
Critical Performance Criteria: \bullet High **Uplink** Throughput / Low Latency

Private 5G Demonstrator Network for Industry 4.0

- Demonstration of key 5G features in a manufacture-focused environment to provide a quantitative performance evaluation.
- Supporting a number of vertical use cases:
 - Factory Ecosystem Monitoring, Decentralised Expertise, Automated Production Assets
- Using a combination of low-band pioneer and shared spectrum.
 - Critical Performance Criteria: High Throughput, Low Latency, High Device Density, High Security

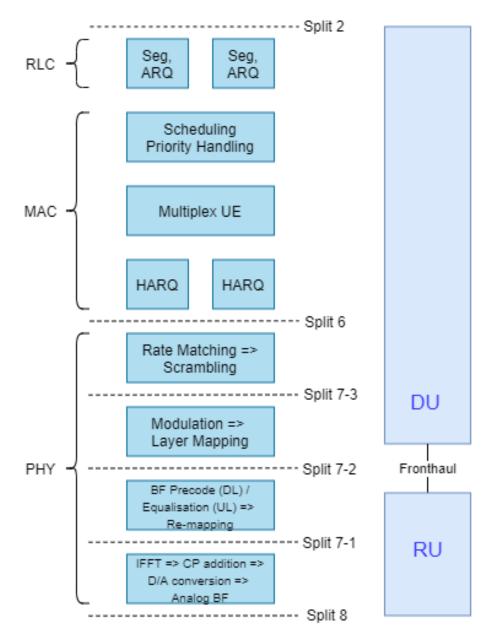
The Green-Economy Driven by NB-IoT

- Connect environmental systems to private network NB-IoT technology for sensing/actuation.
- Using a combination of low-band pioneer and shared spectrum.
- Demonstration and Phase 1 Installation Sites:
 - Mount Stuart, Isle of Bute
 - Broomhead Drive, Dunfermline, Fife
 - Critical Performance Criteria: High Device Density, High Security, NBIoT



Next Generation Radio Access Networks

Future Architectures for 5G and beyond

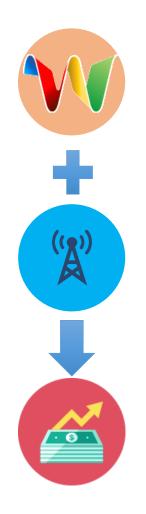

- Distributed Architecture
 - Two-unit system with a Baseband Unit (BBU) and Remote Radio Head (RRH)
- Next Generation Disaggregation
 - Multi-part system with a Centralised Unit (CU), Distributed Unit (DU), and Radio Unit (RU).
- Virtualised RAN (vRAN)
 - CU and DU functionality has been virtualised and moved to a Cloud environment.
 - OpenRAN / O-RAN industry initiatives.

Next Generation SDR RU (fka RRH)

- vRAN could enable better system harmonization.
 - A uniform platform enabling both core and RAN functions.
 - Simplifies management and reduces OPEX.
- It would also be possible to co-locate multivendor solutions
 - Further increasing flexibility for a service provider.
- **Standardised interfaces** enables an open and inter-operable ecosystem.
 - In support of, and complementary to, standards promoted by 3GPP and other industry organisations.

Next Generation Spectrum

Opportunities to Share and Improved Low/Mid-Band Usage and Efficiencies


						Unusable	in Band Plan						7
TVWS (Interleaved) Spectrum LTE B71		614-622 CH 39	622-630 CH 40	630-638 CH 41	638-646 CH 42	646-654 CH 43	654-662 CH 44	662-670 CH 45	670-678 CH 46	678-686 CH 47	686-694 CH 48		
		614-617 GB	617-652 Uplink			652-663 Duplex Gap			663-698 Downlink		698-701 GB		
L							ITE	B87		410-415		5-420	420-425
				_						Uplink 411-416	Duple	x Space 416-421	Downlink 421-426
_TE B48			3550-3700 Uplink and Dov	-			LTE	B88		Uplink	D	uplex Space	Downlink
mbent Access			3550-3700	0									
ority Access		o 70 MHz Betw y Unused Bewee)	3650-3700		LTE	B73		450-455 Uplink		5-460 x Space	460-465 Downlink
	7.01	, endeed Done					LTE	B72		451-456 Uplink	D	456-461 uplex Space	461-466 Downlink
							1			452.5-45		457.5-462.5	462.5-46

- Evolving spectrum access strategies, operating DSA, and new regulatory models will enable new deployment opportunities in many vertical markets and improved spectrum efficiency.
- As the hardware ecosystem grows and develops, new frequency bands become practically available to use.

Conclusion – The Ingredients ...

• Private networks can be tailored to suit the needs and requirements of the vertical markets.

- **Dynamic Spectrum Access (DSA)** ... across many bands
 - New access spectrum mechanisms enable new network deployment opportunities.
 - Improved utilisation of low/mid band spectrum for coverage and capacity.

- Software Defined Radio (SDR) ... for the RU (RRH) and the UE
 - Even though RAN architecture is evolving, an SDR-based RU will bring increased deployment flexibility and application scope.

• Improved economic viability of networks across multiple deployment verticals

Thanks for listening! Engage with us:

https://sdr.eee.strath.ac.uk

@strathSDR

github.com/strath-sdr

