

Sub-teraHertz Frequency bands (bands above 86GHz) The opportunities and the challenges

Simon Pike

spectrum@simonpike.eu

Active applications of >86 GHz

Fixed point-to-point

- W-Band; 92 114.25 GHz (commercial availability in perhaps 18 months)
- D-Band; 130 174.8 GHz (commercial availability in perhaps 5 years)
- Channel/block arrangements defined in ECC Recommendations (18)01 & 18(02)

IMT

- Vision for use of sub-terahertz spectrum for 6G is still being developed
 Space applications
- Particularly for inter-satellite links

Sensing and materials analysis

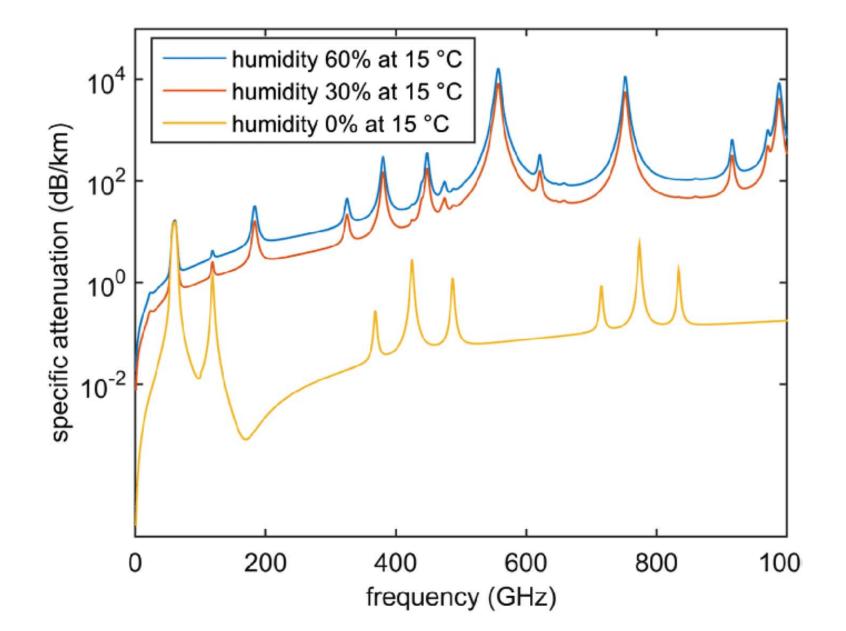
- High operating frequency (to above 1THz) and low power
- Very high bandwidth to achieve precision of resolution (>1THz not uncommon)
- Generally uses different RF technologies to other applications

Meteorology

Limited use at 94 GHz and 238 GHz

Passive applications of >86 GHz

Meteorology


- Requires multiple frequency bands for weather prediction
 - Bands measure different aspects at different heights,
- 175 192 GHz band is critical for humidity data
 - Uses separate channels at peak of absorption and to the side for calibration
 - Scans from vertical to around 30 degrees elevation

Radio astronomy

- There are only two observatories in Europe operating above 86 GHz
 - In the French Alps (2550m ASL) and the Spanish Sierra Nevada (2850m ASL)
 - There are more than 400 molecular resonance lines between 86 GHz and 1 THz
 - 47 of which are considered 'most important'
 - Most are used to observe line radiation in our galaxy
 - so the maximum Doppler shift is low

Atmospheric attenuation

Relative humidity rarely drops below 50% in UK

- But the absolute density of moisture in air drops at low temperature
- At -10° saturated water
 vapour density is 18% of +15°

Attenuation by other atmospheric gases is not significant

 Except at 60 GHz and 120 GHz (due to oxygen)

Attenuation due to Rainfall is 12-15dB/km for 30mm/hour at >80 GHz

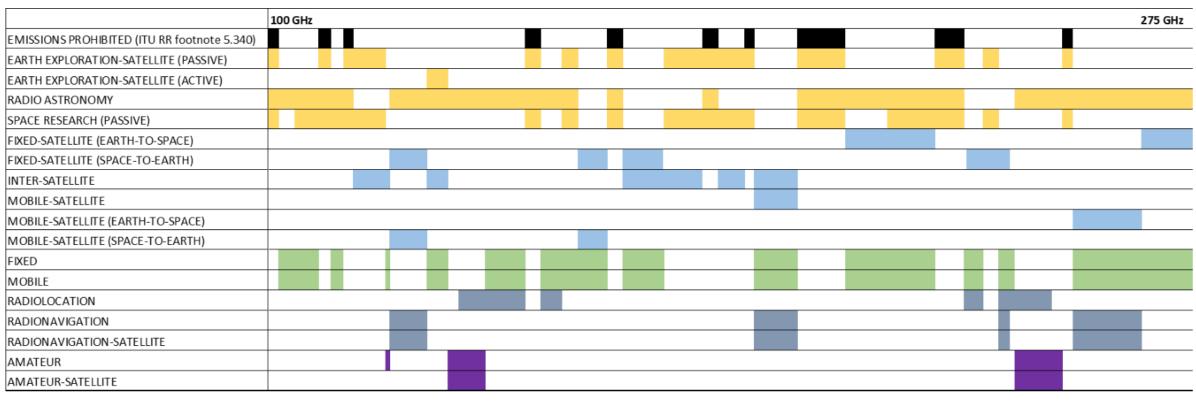
- Typical for 0.01% time in UK

Simon Pike

Three regimes of ITU spectrum regulation

86 - 275 GHz

- Table of allocations in Radio Regulations
- 11 bands with No. 5.340 "All emissions are prohibited"

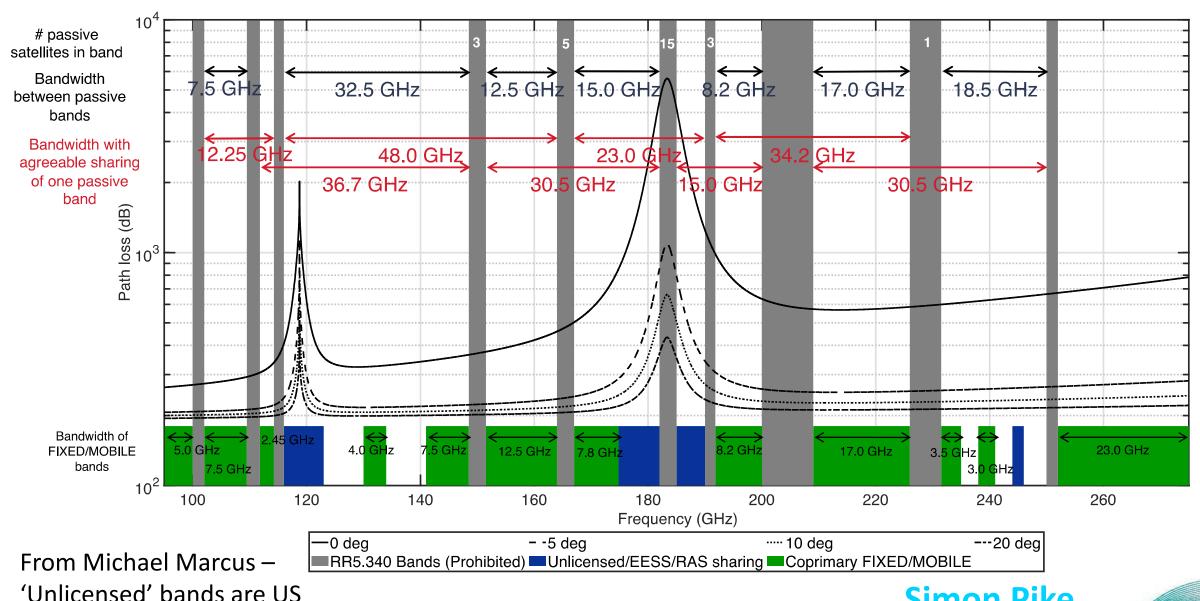

275 - 1000 GHz

- No allocations, but bands are 'identified' for passive services in No. 5.565
 - There are eight bands for Radio astronomy and 27 bands for EESS/SRS
- Only 160 GHz bandwidth is not identified for RA or EESS/SRS
- The widest band above 510 GHz not identified is 30 GHz

275 - 450 GHz

- No. 5.564A: Identification of spectrum for land mobile and fixed services
 - For 139 GHz of this frequency range, "no specific conditions are necessary to protect EESS (passive) applications"
 - There is no mention of other active services

UK Table of allocations between 100 GHz and 275 GHz


Source: Ofcom

All spectrum allocated to mobile is also allocated to the fixed service

- And most of this below 175 GHz is within the W and D band channel arrangements
- The widest contiguous mobile/fixed bands are 23 GHz and 17 GHz
 - These are both above 200 GHz

Available bandwidths with and without sharing with passive services

Simon Pike

Conclusions

There is not an abundance of spectrum between 86 GHz and 275 GHz

- The spectrum is fragmented by allocations to passive services
- There need to be studies on whether active services can operate in these bands under certain conditions
 - In USA, one technical solution involving null-steering is being considered
- The telecoms industry needs to reach a consensus on the division of spectrum for backhaul/fronthaul (point-to-point), mobile point-to-multipoint and peer-to-peer
 - Or whether these can share spectrum
- The higher the frequency band, the longer the time to commercial availability
 - and the shorter the range
- It is important to distinguish between likely technology advances and 'wishful thinking'

There appears to be a lack of regulatory certainty for THz sensing applications operating over very wide bandwidths

Preliminary recommendations and next steps

To Ofcom and terrestrial service stakeholders

- There needs to be an overall view of future use of spectrum up to 275 GHz
 - Before it becomes even more fragmented by 'early adopters'
- This needs to consider sharing opportunities between active applications
- and the feasibility of active services operating within some 'No. 5.340' bands
 - Under specified conditions that do not impair the passive service use

To Government and Ofcom

- UK may be able to take leadership in development of teraHertz applications
 - With help of relatively modest funding and a supportive regulatory regime
 - Possibly under the supplier diversification programme

NEXT STEPS

- I will write a report for SPF on the teraHertz 'landscape' in UK
- I would welcome input from interested parties

