A Glimpse of Next-Generation Wireless Enabling Techniques

Presented by **Lajos Hanzo**

with Members of Next-Generation Wireless at Southampton

A Glimpse of Next-Generation Wireless Enabling Techniques

Presented by **Lajos Hanzo**

with Members of Next-Generation Wireless at Southampton

Overview

- Historic Preamble
- The Road to Industry 4.0, the Verticals & Massive Grant-Free Access
- The Confluence of the Communications-, Information- & Operations Paradigms
- What Will 6G Be?
 - 6 Security
 - 2 6G Applications: Sensing & SAGIN
 - 6 6 Spectrum
 - Global 6G Coverage
- From Conflicting Design Trade-offs to Fully-Feldged Pareto-Optimal 6G
- The Future?

- Acknowledgements
- Promises
- . Historic Preamble...

The Road to Industry 4.0 & the Verticals: 1770 - 2021

A Communications-, Information- and Operation Technology Perspective
 (c) Wan, Gao, di Renzo & Hanzo

The Founders of Our Field: 1831 - 2001

Life Through the Communications Era V 1.0...

Wireless Generations: 2000 - 2020

 Liu, Qin, Elkashlan, Ding, Nallanathan & Hanzo: Nonorthogonal Multiple Access for 5G and Beyond, Proceedings of the IEEE, 2017

The Road to Industry 4.0 & the Verticals

 \bullet Processing Paradigms for Grant-Free Access: non-cooperative, cloud & fog architectures ©Wan, Gao, di Renzo & Hanzo

The Road to Industry 4.0 & the Verticals

 Detection Probability of Massive Grant-Free Access using the algorithm of ©Ke et al. Cloud computing and edge-computing paradigms, IEEE JSAC, March 2021

The Road to Industry 4.0 & the Verticals

OT Evolution

IT Evolution

CT Evolution

• The Confluence of the Communications-, Information- & Operations Paradigms ©Wan, Gao, di Renzo & Hanzo

.Statement 1: The single-component pure bandwidth, power or delay optimization era is over, let's discover the entire Pareto-front of optimal Industry 4.0 solutions ... Demo?

What Will 6G Be?

SOURCE

Towards 6G wireless communication networks: Vision, enabling technologies and new paradigm shifts, Science China, 2020 ©You, Wang ... & Hanzo

6G Network Security: Classic & Quantum Cryptography

- Pan, Li, Ruan, Ng and Hanzo: Single-Photon-Memory Two-Step Quantum Secure Direct Communication Relying on Einstein-Podolsky-Rosen Pairs IEEE Access, 2020
- Hosseinidehaj, Babar, Malaney, Ng & Hanzo: Satellite-Based Continuous-Variable Quantum
 Communications: State-of-the-Art and a Predictive Outlook, IEEE Comms. Surveys & Tutorials, 2018

6G Application 1: The Internet of Underwater Things (IoUT), 'Big' Marine Data (BMD) Analytics & Al

Source

 Internet of Underwater Things and Big Marine Data Analytics, by Jahanbakht, Xiang, Hanzo & Rahimi, ResearchGate, IEEE Comms. Surveys & Tutorials

6G Cognitive Spectrum Sharing ©H. Haas

SOURCE

- L. Hanzo, H. Haas, S. Imre, D. O'Brien, M. Rupp, and
- L. Gyongyosi, "Wireless myths, realities and futures" *Proceedings* of the IEEE, vol. 100, pp. 1853 –1888, 13 2012,

Spectrum Sharing

eMBB

Super Data Layer

Addressing specific use cases requiring extremely high data rates

Above 6 GHz

800 MHz assignments (contiguous)

eMBB, URLLC, mMTC (wide area but no deep coverage)

Coverage and Capacity Layer Best compromise between capacity

est compromise between capacity and coverage 2 – 6 GHz

100 MHz assignments (contiguous)

eMBB, URLLC, mMTC

Over-sailing Layer

Wide area and deep indoor coverage

Below 2 GHz

Up to 20 MHz paired/unpaired

SOURCE

4G & 5G Spectrum Sharing: Efficient 5G Deployment to Serve Enhanced Mobile Broadband and Internet of Things Applications by Wan, Guo, Wu, Bi, Yuan, Elkashlan & Hanzo, IEEE VTM, 2018

- 6G Spectrum Sharing in Joint Sensing & Communication:
- 1/ Joint Waveform Design (PAPR, ACF, CCF); 2/ MIMO;
- 3/ Synchronization; 4/ ML in the Face of Uncertainty

SOURCE

- Joint Radar and Communication Design: Applications,
 State-of-the-Art, and the Road Ahead, ©IEEE Liu, Masouros,
 Petropulu, Griffiths & Hanzo IEEE TCOM, 2020
- Mobile Radio Communications by Steele & Hanzo, 1999, Chapter 2, Bello Functions

Multi-Component Pareto Optimization: Bandwidth, BER, Delay, Power & Complexity, etc

SOURCE

- Alanis, D.; Botsinis, P.; Babar, Z.; Ng, S.X.; Hanzo, L.: Non-Dominated Quantum Iterative Routing Optimization for Wireless Multihop Networks, IEEE Access
- Alanis, D.; Botsinis, P.; Soon Xin Ng; Hanzo, L.: Quantum-Assisted Routing Optimization for Self-Organizing Networks: IEEE Access, Volume: 2, 2014, pp 614 - 632
- Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks, ©Wang, Jiang, Zhang, Ren, Chen & Hanzo IEEE COMST, 2020

2G, 3G & 4G Coverage Maps

Application 2: Space, Air Ground Integrated Network (SAGIN)

SOURCE

Aeronautical Ad Hoc Networking for the Internet-Above-the-Clouds, Zhang, Chen, Zhong, Wang, Zhang,

Zuo, Maunder & Hanzo, Proc. of the IEEE'19

Application 2: SAGIN Snap-Shot of Ships

Green: Cargo; Blue: Cruise; Red: Tanker; Yellow: Fishing;

Application 2: SAGIN Snap-Shot of Planes

SOURCE

 Aeronautical Ad Hoc Networking for the Internet-Above-the-Clouds, Zhang, Chen, Zhong, Wang, Zhang, Zuo, Maunder & Hanzo, Proc. of the IEEE'19

Pareto-front MCOF=f[Delay, Path-Lifetime] © Dong Liu

Flight-BA289 to GS at IST (2018-06-29 15:00:00 UTC)

3D Pareto-front MCOF=f[Throughput, Delay, Path-Lifetime © Dong Liu]

Wireless Futures... ©CCBY

LB3D.CO/33685