≜UCL

Non-orthogonal signals for spectral and energy efficient transmission;

are these the ideal candidates for 6G?

Professor Izzat Darwazeh Director of UCL Institute of Communications and Connected Systems (ICCS) University College London, UK

> Radio Access Network Techniques for 6G July 2021

Why does radio/modulation change from generation to generation?

We would like radio signals that can carry **all the information**, maintaining data **quality** and integrity in smallest possible **bandwidth** and lowest possible **energy** using **simplest** equipment.

- Use: think of 1G, GSM, UMTS and then LTE and 5G
- Data rate: kb/s to Gb/s
- Bandwidth and radio
- Signal quality and errors:
 - Channel physics: delay spread, environment, user speed
 - Channel use: noise and interference
- Equipment, energy and complexity

Why does radio/modulation change from generation to generation?

We would like radio signals that can carry **all the information**, maintaining data **quality** and integrity in smallest possible **bandwidth** and lowest possible **energy** using **simplest** equipment.

Use: think of 1G, GSM, UMTS and then LTE and 5G

- Data rate: kb/s to Gb/s
- Bandwidth and radio

 ${}^{\bullet}$

- Signal quality and errors:
 - Channel physics: delay spread, environment, user speed
 - Channel use: noise and interference
- Equipment, energy and complexity

OFDM concept has not changed since 1958!!

Figure 12-6. Timing Pulse Relation

- A binary bit stream is divided into N-binary bit streams.
- Bit duration is extended from T_b to N x T_b What does this do to the spectrum?
- Each of the N sub-streams modulates a sinusoidal carrier known as (sub-carrier)
- The carriers are at different frequencies and are separated by
 - $\Delta f = 1/N \times T_b$
- The sub-streams are added together and transmitted

The concept has not changed since 1958!!

Total BW 2090 + 110 = 2200 Hz 20 sub-carriers Sub-carrier separation = 110 Hz = 1/18.2 ms

Figure 12-7. Channel Allocation at 100 WPM

Figure 12-5. Energy Versus Frequency Distribution of Transmitted Pulses and Infinite Q Resonator Responses

This is an FSK system, but a special one!!

OFDM circa 1959

colling kineplex systems

KINEPLEX' DATA SYSTEMS

	Туре	Dimensi (inche W D	iosa H) H	Weight (lbs.)	Channels	Operational Bate
Kineplex Data System	TE-202	41 20	8638	400	40	75 bits per second per channel 3,000 bits per second total
Kineplex Data System with Teletypewriter Converters	TE-202	41 20	863%	700	40	60, 75 or 100 words per minute per channel
Kineplex Data System	TE-206	25 18	58	175	8	300 bits per second per channel 2,400 bits per second total
Kinecard Converter	768G-1	25 20	66	300		100 cards per minute
Kinetape Converter	768H-1	25 20	66	350		300 eight bit characters per second
Kinetape Converter	768H-2	25 20	66	350		300 seven-bit characters per second

R. Mosier and R. Clabaugh, Kineplex, a bandwidth efficient binary transmission system, AIEE Proceedings, Vol. 76, January 1958

Parallel Communications methods are not new!!

Orthogonal FDM

(a) OFDM Spectrum

LTE and 5GNR Where else is OFDM used?

System	Transform Size	Number Carriers	Channel Spacing kHz	Bandwidth MHz	Sample Rate MHz	Symbol Duration µsec	Data Rate Mbits/s
HyperLAN/2	64	52 4	312.5	16.25	20	3.2 0.8	6-54
802.11a	64	52 4	312.5	16.56	20	3.2 0.8	6-54
DVB-T	2048 1024	1712 842	4.464	7.643	9.174	224	0.68-14.92
DAB	2048 8192	1536	1.00	1.536	2.048	24/48/96 msec	3.072
ADSL	256 (down) 64 (up)	36-127 7-28	4.3125	1.104	1.104	231.9	0.64-8.192

Used in GSM

The non-orthogonal signal waveform

- > OFDM (12 sub-carriers, data rate is Rb).
- > SEFDM Type-I (12 sub-carriers, bandwidth compression factor $\alpha = 0.67$, data rate is *Rb*).
- ► SEFDM Type-II (12 sub-carriers, bandwidth compression factor α =0.67, data rate is 1.5*Rb*).

M. Rodrigues and I. Darwazeh, "A spectrally efficient frequency division multiplexing based communications system," in Proc. 8th Int. OFDM Workshop, Hamburg, 2003, pp. 48 – 49.

Mutistream Faster Than Nyquist (FTN)

(D. Dasalukunte, F. Rusek, and V. Owall, "An iterative decoder for multicarrier faster-than-Nyquist signaling systems," in Communications (ICC), 2010 IEEE International Conference on, May 2010, pp. 1–5)

FTN: increase spectral efficiency by transmitting data faster than Nyquist criterion.

Nyquist Symbol

Bandwidth Saving vs. ICI

No PAPR penalty

And in 1975...

THE VOL. 54 NO. 8 BELL SYSTEM TECHNICAL JOURNAL

A. D. Wyner	The Wire-Tap Channel	1355
G. J. Foschini, R. D. Gitlin, and J. Salz	Optimum Direct Detection for Digital Fiber- Optic Communication Systems	1389
J. A. Arnaud	Transverse Coupling in Fiber Optics—Part IV: Crosstalk	1431
J. E. Mazo	Faster-Than-Nyquist Signaling	1451
P. Cummiskey	Single-Integration, Adaptive Delta Modulation	1463
B. G. Haskell and R. L. Schmidt	A Low-Bit-Rate Interframe Coder for Videotelephone	1475
R. E. Crochiere, L. R. Rabiner, and R. R. Shively	A Novel Implementation of Digital Phase Shifters	1497
	Contributors to This Issue	1503

THE Vol. 54, No. 8, October 101. Printed in U.S.A.

Faster-Than-Nyquist Signaling

By J. E. MAZO

(Manuscript received March 27, 1975)

The degradation suffered when pulses satisfying the Nyquist criterion are used to transmit binary data in noise at supraconventional rates is studied. Optimum processing of the received waveforms is assumed, and attention is focused on the minimum distance between signal points as a performance criterion. An upper bound on this distance is given as a function of signaling speed. In particular, the pulse energy seems to be the minimum distance up to rates of transmission 25 percent faster than the Nyquist rate, but not beyond.

the Nyquist rate, but not beyond. Some mathematical aspects related to the above problem are also considered. In particular, the minimum distance is rigorously shown to be nonzero for all transmission rates. This is tantamount to showing that, in the singular case of linear prediction, perfect prediction cannot be approached with bounded prediction coefficients.

I. INTRODUCTION

The use of Nyquist pulses $a(t) = \frac{\sin(\pi t/T)}{(\pi t/T)}$
to send binary (or multilevel) data without intersymbol interference over a channel of bandwidth $W = (1/2T)Hz$ is classic. If we assume
that one receives the pairs $(1, nT)$, $a_n = \pm 1$, independently, (1)
$u(t) = \sum_{n=N_1}^{\infty} a_n g(t - nT)$ use in noise of two-sided spectral density $N_0/2$,

Simple signal generation using IFFT

Customized Hardware Transmitter

Metric	Value
Analogue Bandwidth with buffering PER DAC (8 in total)	150MHz
DAC Resolution	16-Bit
Max SNR	106dB
Max sample length/DAC	300mS
Live streaming – 1 DAC Analogue bandwidth	31.25MHz
Live streaming – 4 DAC Analogue Bandwidth	7.125MHz

VLSI Transmitter Implementation

[1]. P. Whatmough, M. Perrett, S. Isam, and I. Darwazeh, "VLSI architecture for a reconfigurable spectrally efficient FDM baseband transmitter," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, no. 5, pp. 1107–1118, may 2012

- Reconfigurable SEFDM modulator
- 32nm CMOS process
- Throughput of 250 Mbps to 750 Mbps for QPSK 64QAM 18

The detection problem

Different colours indicate different symbols. The dark lines indicate the decision boundaries

B-SEFDM vs. OFDM

Experimental bandwidth comparison of B-SEFDM (α = 0.8) versus OFDM. By transmitting the same amount of data, B-SEFDM requires a bandwidth of 7.212 MHz while OFDM needs 9.015 MHz. Carrier frequency is 2 GHz, frequency span is 15 MHz and resolution bandwidth (RBW) for OFDM and B-SEFDM are 3 KHz and 60 KHz, respectively.

Results measured in a static frequency selective channel

Channel characteristic:

 $h(t) = 0.8765\delta(t) - 0.2279\delta(t - T_s) + 0.1315\delta(t - 4T_s)$ $-0.4032e^{\frac{j\pi}{2}}\delta(t - 7T_s)$

 \succ Fig (a) shows systems with different bandwidth compression factors. For high values, curves can converge to the OFDM one. But with small values, it will not converge due to high ICI. \succ Fig. (b) shows the convergence performance with α =0.6. It is clearly seen that 4 iterations are sufficient to get converged BER performance.

Wireless

[1]. T. Xu and I. Darwazeh, "Bandwidth compressed carrier aggregation," in IEEE ICC 2015 - Workshop on 5G & Beyond - Enabling Technologies and Applications (ICC'15 - Workshops 23), London, United Kingdom, Jun. 2015, pp. 1107–1112.

[2]. T. Xu and I. Darwazeh, "Practical Implementation of Bandwidth Compressed Carrier Aggregation," Wireless Communications, IEEE Transactions on. (second revision)

[3]. T. Xu and I. Darwazeh, "Nyquist-SEFDM: Pulse Shaped Sub-Carriers with Frequency Spacing Below the Symbol Rate," in Wireless Communications and Networking Conference (WCNC), IEEE, 2016 (submitted).

The above experiment testbed is applicable to two scenarios:

- 1. LTE: Single band SEFDM (excluding zero insertion)
- 2. LTE-A: Carrier aggregation SEFDM (including zero insertion)

Wireless: LTE format

One SEFDM frame (51 SEFDM symbols: one pilot symbol and 50 user symbols

A static frequency selective channel is emulated.

Carrier frequency	2 GHz
Sampling frequency	30.72 MHz
Occupied channel bandwidth	$\alpha \times 18.015$ MHz
Sub-carrier modulation bandwidth	30 KHz
Sub-carrier spacing	$\alpha \times 15$ KHz
Bandwidth saving	(1-lpha) imes 100%
FFT size	2048
Occupied sub-carriers (inc. DC)	1201
Guard sub-carriers	847
Cyclic prefix	144
Frame structure	1 preamble, 50 SEFDM symbols
Modulation scheme	4QAM
Raw bit rate	36.03 Mbps
Channel coding	(7,5) convolutional code
Coding rate	R=1/2
Interleaver	2400-bit random

Path	Relative path loss (dB)	Delay values (us)	Phase (degree)
1	0	0	0
2	5.9	$2T_s=0.0651$	180
3	8.2	$8T_s=0.2604$	0
4	3.4	$14T_s$ =0.4557	270

Time-domain channel estimation and equalization

SEFDM

 $\alpha = 0.8$

-0.3 -0.2 -0.1

0.1 0.2 0.3 0.4

0.2

0.15

0.1

-0.05

-0.1

-0.2

UC

α = 0.8 14.4 MHz

α = 0.6 10.8 MHz

Wireless: LTE

(a). Performance of different Turbo-SEFDM systems with various levels of bandwidth compressions in the RF environment with frequency selective channel. v is the number of iterations.

(b). Throughput of different Turbo-SEFDM systems computed based on the BER information in Fig (a) and system specifications. v is the number of iterations.

(c). CCDF of PAPR for SEFDM and OFDM systems modulated with 4QAM symbols.

UCL

Realistic channel (ETU70) measurements

Doppler Prefer	Concession of Co			Colores -	A REAL PROPERTY.	State of the local division of the local div	A CLASS OF BUILDING	
Path Facine	Chan PROJECT	Dink Delard	** 5			Faseg	Marine Constant Channel Model	9
221 0.27	a Tape	Hel	Vel. domite	Modeling	Retative Path Low (CR)	Delay Vode	Celey/Value (us) Ninin	
E 2 Roko	ati	70	21.470	10	1	Faced	0	
R 3 Baying	-the	70	31.478	10	1	Final	0.05	
E4 Rayer	ich .	10	31.478		0	Fand	0.2	
E 5 Rayler	dh	70	31.478		ø	Freed	0.23	
El A Reyler	ch .	20	31.478		0	lued	0.5	
B S Review	ah	70	31.478	8	5	Tweed	16	
E9 Rayes	gh .	70	31.478	0	1	Fined	5	
10 State					U	finet.	0	
111 State					0	Fixed	0	
12 State					0	Food	0	
14 State					D	Final	0	
15 Stetic						Ford	D	
16 State						Faced	D	
17 \$4200					0	frond	D	
1 18 State					0	Toted	0	
120 State					â	loed	0	
22 Blatte					u	Timed	0	
Carlos and Carlos	STATES OF THE OWNER.							
acks							Cose	
1		8	Enutre	N	White			
								6
4								
	311 311 311 311 311							

ETU Delay Profile

Excess tap delay (ns)	Relative power (dB)
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

- The number of NB-IoT subcarriers is 12 with each occupying 15 kHz and overall bandwidth is 180 kHz (one resource block).
- For such a narrow band signal, frequency selective in one resource block exists.

SEFDM with carrier aggregation)

- Realistic LTE defined multipath fading channel with 5 kHz Doppler spread is used.
- Seven signal bands are aggregated in CA-SEFDM while five for CA-OFDM in the same bandwidth.
- ➢ 40% more data can be delivered using the CA-SEFDM scheme.

(b). Effective spectral efficiency (bit/s/Hz) of different CA-SEFDM systems computed based on the BER information and the system specifications.

LTE: 50 Mbit/s SEFDM: 70 Mbit/s

SEFDM over optical channels

[1]. D. Nopchinda, T. Xu, R. Maher, B. Thomsen, and I. Darwazeh, "Dual polarization coherent optical spectrally efficient frequency division multiplexing," Photonics Technology Letters, IEEE, vol. 28, no. 1, pp. 83–86, Jan 2016.

Experimental setup of PDM-CO-SEFDM transmission system

Optical: Coherent

60 GHz mm-wave Radio Over Fiber SEFDM

[1]. S. Mikroulis, T. Xu, J. E. Mitchell and I. Darwazeh, "First demonstration of a spectrally efficient FDM radio over fiber system topology for beyond 4G cellular networking," in Networks and Optical Communications - (NOC), 2015 20th European Conference on, Jun. 2015, pp. 1–5.

[2]. S. Mikroulis, T. Xu, and I. Darwazeh, "Practical demonstration of spectrally efficient FDM millimeterwave radio over fiber systems for 5G cellular networking," in Proc. SPIE, vol. 9772, 2016, pp. 97 720I–1–97 720I–8.

[3]. T. Xu, S. Mikroulis, J. E. Mitchell and I. Darwazeh, "Bandwidth Compressed Waveform for 60 GHz Millimeter-Wave Radio over Fiber Experiment," Lightwave Technology, Journal of. 2016.

85 GHz mm-wave SEFDM

Experimental Demonstration of Spectrally Efficient Frequency Division Multiplexing Transmissions at E-Band Hedaia Ghannam;Dhecha Nopchinda;Marcus Gavell;Herbert Zirath;Izzat Darwazeh IEEE Transactions on Microwave Theory and Techniques Year: 2019 | Volume: 67, Issue: 5

Wireless: E-band (82-68 GHz) UCL Collaboration with Chalmers University and Gotmic-Sweden

Fig. 2. E-band block diagram [41] and chip photograph. (a) Transmitter, Tx: gTSC0023B. (b) Receiver, Rx: gRSC0014B.

Fig. 8. Comparison of BER results versus E_b/N_0 for a given $(\alpha, \log_2(M), R_c)$.

Fig. 7. Spectra of the received samples obtained from the experiment for OFDM ($\alpha = 1$) and SEFDM ($\alpha = 445$ and 2/3) for the same transmission rate 8 Gb/s. (a) OFDM ($\alpha = 1$), BW = 4 GHz. (b) SEFDM ($\alpha = 4/5$), BW = 3.2 GHz. (c) SEFDM ($\alpha = 2/3$), BW = 2.67 GHz.

E-band transmission test bed. (b) 1 ransmitter cnip. (c) receiver cnip.

UCL

Indoor 60 GHz millimeter-wave signal transmission

- 60 GHz parabolic antennas have 30 dBi gain; and 3 dB beamwidth of 3.1 ° are employed.
- A 30 dB gain high power amplifier (HPA) at the transmitter and a 30 dB gain low noise amplifier (LNA) at the receiver.
- Transmission distances from few cm to 3 metres.

Experimental results for the mm-wave SEFDM-2

Iteration study

- > OFDM: no iteration.
- > SEFDM: at least one iteration.

BER measurements

- ➤ Within the same bandwidth, bit rate can be increased by up to 67%.
- 4QAM α=0.67 outperforms the 8QAM OFDM have the same spectral efficiency. SEFDM has with 1 dB performance gain.
- > The 4QAM α =0.6 outperforms the 8QAM OFDM in both spectral efficiency and BER performance.

Experimental results for the mm-wave SEFDM-3

Bit rate (Gbit/s) measurements

- SEFDM results in better throughput in both net and gross bit rates.
- Gross bit rate: Achievable non-error bits per second <u>including</u> overhead.
- Net bit rate: Achievable non-error bits per second without overhead.
- A lower order modulation format 4QAM shows higher bit rate than a higher order format 8QAM over the same bandwidth.

Complex modulation and probabilistic shaped SEFDM Use of ML on 5G-like signals to design signal, modulation and constellation

Same bandwidth but higher rate

Coexistence of orthogonal and nonorthogonal signals

Spectral Efficiency Improvement Increase bit rate: FTN Reduce BW or increase bit rate SEFDM Coexistence advantage: FBMC, GFDM, UFMC

SEFDM

- Data rate improvement
- Bandwidth saving
- Similar signal generation with OFDM
- Easy integration in existing communication systems

Non orthogonal multi carrier satisfies what we need; mm wave, high rates, small cells,

We would like radio signals that can carry **all the information**, maintaining data **quality** and integrity in smallest possible **bandwidth** and lowest possible **energy** using **simplest** equipment.

- Use: high rates and use of AI
- Bandwidth wide available and at mm wave to THz, still not infinite!
- Signal quality and errors:
 - Channel physics: multipath even at point to point
 - Channel use: noise and interference/ high congestion
- Equipment, energy and complexity

Acknowledgment

University College London-past

- Dr Hedaia Ghannam
- Dr Waseem Ozan ٠
- Dr Dimitrios Karampatsis ۲
- Dr Kai Li •
- Dr Ioannis Kanaras ٠
- Dr Safa Isam Ahmed ٠
- Dr Marcus Perrett ٠
- Dr Arsenia Chorti ۲
- Dr Paul Whatmough ۲
- Dr Spiros Mikroulis •
- Dr Benn Thomsen •
- Professor Farokh Marvesti •
- Professor Kyle Jamieson ٠
- Professor Herbert Zirath

University College London Dr Tongyang Xu Ms Xinyue Liu **Professor Miguel Rodrigues** Dr Dhecha Nopchinda Dr Ryan Grammenos Professor John Mitchell

CSNDSP 2018

The First 15 Years of SEFDM: A Brief Survey

(Invited Paper)

Izzat Darwazeh, Hedaia Ghannam and Tongyang Xu

Department of Electronic and Electrical Engineering, University College London, London, UK Email: {i.darwazeh; hedaia.ghannam.15; tongyang.xu.11}@ucl.ac.uk

Abstract-Spectrally efficient frequency division multiplexing FTN concepts were effectively combined to create a joint (SEFDM) is a multi-carrier signal waveform, which achieves higher spectral efficiency, relative to conventional orthogonal frequency division multiplexing (OFDM), by violating the orthogonality of its sub-carriers. This survey provides the history of SEFDM development since its inception in 2003, covering fundamentals and concepts, wireless and optical communications applications, circuit design and experimental testbeds. We focus on work done at UCL and outline work done other universities and research laboratories worldwide. We outline techniques to improve the performance of SEFDM and its practical utility with focus on signal generation, detection and channel estimation.

spectrally efficient technique termed time frequency packing (TFP) [12]. Aside from the schemes mentioned above, a nonorthogonal waveform termed generalized frequency division multiplexing (GFDM), where each sub-carrier is pulse shaped, was developed in [13], leading to a novel waveform that has very low out-of-band emission (OOBE) leakage. Other related waveforms such as filterbank based multicarrier (FBMC) [14], universal-filtered multi-carrier (UFMC) [15] and Nyquist-SEFDM [16] aim for the same advantage. Recently a new waveform termed Truncated OFDM (TOFDM) was proposed, where the transmission rate is increased by tr

I INTRODUCTION