

UK Spectrum Policy Forum: 6 GHz band

Alex Roytblat Vice President of Regulatory Affairs, Wi-Fi Alliance April 28, 2022

Proprietary | © Wi-Fi Alliance

Today's connectivity requires network diversity

- Wi-Fi is the preferred wireless access technology for indoor/enterprise
- 5G mostly used for outdoor coverage

Proprietary | © Wi-Fi Alliance

From 2G to 3G to 4G to 5G: Traffic Offload to Wi-Fi continues to grow

UK Ofcom's 2021 Mobile Matters Report:

- "Seventy-three per cent of data connections were made over wi-fi rather than a cellular network, with no significant differences by rurality or nation."
- "Nearly three-quarters of data connections were made over wi-fi rather than a mobile network (2G, 3G, 4G or 5G) during the research period."

Upshot:

Increased data traffic and number of active devices exhaust spectrum capacity accessible to Wi-Fi causing performance degradation when it is needed most

Good news: Global momentum is building around 6 GHz Wi-Fi

- 6 GHz <u>Decisions</u> -- transformative to Wi-Fi ecosystem
 - Over 60 countries already decided to open 6 GHz band for Wi-Fi; 20+ countries initiated proceedings toward opening 6 GHz band
- Wi-Fi industry galvanized to deliver <u>Wi-Fi 6E</u> technology and devices in record time
- Wi-Fi 6E brings:
 - Better speed, capacity, and latency
 - Quality in demanding environments
 - Advanced connectivity experiences
 - Tailored power consumption for IoT
 - New innovative possibilities

5

Wi-Fi 6E progress

- 350M Wi-Fi 6E devices will ship in 2022
- 58M Wi-Fi 6E APs will ship in 2022
- Wi-Fi 6E will be 11% of global Wi-Fi 6 device shipments in 2022
- Eighty three percent of surveyed companies have deployed or plan to deploy Wi-Fi 6 or Wi-Fi 6E before the end of 2022
- Fifty eight percent of these companies said that 6 GHz was critical or very important to their strategy
- <u>Wi-Fi 6E home trials</u> report speeds of 1.7 Gbps downlink and 1.2 Gbps uplink
- <u>Turk Telekom Wi-Fi 6E trial</u> achieved a connection speeds of 2 Gbps and above with low latency

Source: IDC, WBA, CableLabs

Trends shaping future of wireless connectivity

- Wireless Application Trends::
 - Immersive experiences (*Metaverse/6G*): such as VR/AR/XR, telepresence, immersive 3-D
 - Telehealth
 - Industrial IoT/Automation
 - Video streaming (8k video uncompressed data rate is 20 Gbps)
- Requirements Trends:
 - High-throughput, higher data rates
 - Stringent low-latency
 - Reliability and QoS
- Network Coverage Trends:
 - More localized
 - Short(er) range communications
- Local area networks (e.g., Wi-Fi) are the preferred wireless access technology for indoor and short-range
- Wide area networks (e.g., 5G) mostly used for outdoor coverage

Wi-Fi Connectivity Requires 1200 MHz in 5925-7125 MHz band

- Fact: Unlicensed technologies (e.g., Wi-Fi) relying on dynamic random spectrum access and contention-based protocols require access to multiple channels to maintain acceptable performance
- Fact: Next Generation <u>Wi-Fi 7</u> (IEEE 802.11be) designed for Extremely High Throughput -- channel bandwidth of up to 320 MHz
- Fact: 5925-7125 MHz frequency band is uniquely suited to meet growing demand for Wi-Fi connectivity – *no alternative spectrum* now or in the future

	925 MHz	6425 MHz	6525 MHz	6875 I	ИНz	7 125 MHz
				· · · · · · · · · · · · · · · · · · ·		
		5	5925-7125 MHz	i		
59 x 20 MHz	20\20\20\20\20\20\20\20\20\20\20\20\20\2	0\/20\/20\/20\/20\/20\/20\/20\/20\/20\/2	20\/20\/20\/20\/20\/20\/20\/20\/20\/20	20 20 20 20 20 20 20 20 20 20 20 20 20 2	20\/20\/20\/20\/20\/20\/20\/20\/20\/20	20 20 20
29 x 40 MHz	$\overline{40}\overline{40}\overline{40}\overline{40}\overline{40}\overline{40}\overline{40}\overline{40}$	40 \vee 40 \ve		$\sqrt{40}\sqrt{40}\sqrt{40}/40\sqrt{40}/40\sqrt{40}$	$\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$ $\sqrt{40}$	40
14 x 80 MHz	80 80 80 80 80	80 \/ 80 \/ 80	0 \ 80 \ 80	√ 80 ∖ 80 √	80 \ 80 \ 80	\mathbf{V}
7 x 160 MHz	<u> </u>	160	160	160 \/ 160	160	
3 x 320 MHz	320		320	V	320	
			I			

11

Upshot: Spectrum Policy Drivers

- Spectrum Access and Sharing impact on incumbent services, priority spectrum access requirements
- Equipment cost, availability
- Network Complexity installation, operation

Conclusions – considering 6 GHz approaches for UK

- Identification for IMT in 6425-7125 MHz will not deliver "expected benefits"
 - Global or even regional harmonization for IMT in 6425-7125 MHz is not feasible; Countries in all 3 Regions already deploying RLANs in 5925-7125 MHz;
 - Unlikely to result in actual IMT network deployments; Underutilized spectrum resource for years
 - <u>No alternative spectrum</u> to accommodate growing Wi-Fi ecosystem now or in the future; Impede introduction of Wi-Fi 6E, Wi-Fi 7 and beyond
 - Create confusion and regulatory uncertainty for incumbent services
- Wi-Fi ecosystem is meeting growing demand for connectivity and delivering significant socioeconomic benefits -- **today**
 - Wi-Fi 6E technology is available now (350 million Wi-Fi 6E devices will ship in 2022); state of the art wireless experience
 - Regulators worldwide are moving forward with RLANs in 5925-7125 MHz band (e.g., Brazil, Canada, Mexico, Saudi Arabia, S. Korea, US) (see <u>www.wi-fi.org/countries-enabling-wi-fi-6e</u>)

References

Study summary

TELECOM ADVISORY SERVICES Nev York - Baeno Aires - Madrid - Bogsta
COVID-19 AND THE ECONOMIC VALUE OF WI-FI
December 2020
1
COVID-19 and Wi-Fi

Thank you

Alex Roytblat

Vice President of Regulatory Affairs Wi-Fi Alliance +1.512 717 7856 office aroytblat@wi-fi.org Value of Wi-Fi®
UNITED KINGDOM20212025\$99\$109billionbillion

veloped for Wi-Fi Alliance[®] by TELECOM ADVISORY SERVICES

February 2021

Study details