

RF Sampling in Multiband Receivers for 5G: Analysis and Performance

Presented by Professor Timothy O'Farrell Email: T.OFarrell@sheffield.ac.uk

With

Dr Stephen Henthorn, Dr Reza Mohammadkhani, Professor Lee Ford

Department of Electronic & Electrical Engineering, University of Sheffield, UK

Presentation Outline

- Introduction
- Conventional Concurrent Multiband Receivers
- Direct RF Sampling Concurrent Multiband Receivers
 - Nyquist sampling
 - Subsampling
- Noise in Direct RF Sampling Concurrent Multiband Receivers
- The effect of ADC Resolution on Concurrent Multiband Direct RF Sampling Receivers
- Conclusions

Research Aims

- Develop frequency agile, concurrent, multiband, direct RF sampling receivers for SDRs.
- Reduce receiver costs, complexity and energy consumption.
- Apply in LTE and 5GNR to support, for example:
 - carrier aggregation;
 - dual inter- and intraRAT connectivity, for example, in HetNets;
- Demonstrate proof of concept in hardware-in-the-loop (HWIL) SDR testbeds.
- In this presentation, we report new results on the impact of ADC bit resolution on the system performance

Previous Related Projects

The University Of Sheffield.

Electronic & Electrical Engineering

Conventional Concurrent Multiband Receiver

Tunable,

Multiband,

Slot Antenna

Direct RF Sampling Concurrent Multiband Receiver

Invited Paper:

O'Farrell, T., Beach, M.A., Singh, R., Bai, Q., Arabi, E., Gamlath, C., Ford, K.L., Morrison, K., Langley, R., (2017). "Tunable, Concurrent Multiband, Single Chain Radio Architecture for Low Energy 5G-RANs." In: International Workshop on Service-oriented Optimization of Green Mobile Networks (GREENNET) - in conjunction with WiOpt 2017 (GREENNET'17), Paris, France, 18 May 2017. DOI: 10.23919/WIOPT.2017.7959932

Bai, Q., Singh, R., Ford, K.L., O'Farrell, T. and Langley, R. (2017) "An Independently Tunable Tri-band Antenna Design for Concurrent Multi-band Single Chain Radio Receivers." In: IEEE Transactions on Antennas and Propagation, vol.65, no.12, pp.6290 -6297, September 2017 (DOI: 10.1109/ TAP.2017.2748185)

0

 f_1

f₂

 $f_N \leq f_s/2$

Electronic & Electrical Engineering

Electronic & Electrical Engineering

Electronic & Electrical Engineering

Electronic & Electrical Engineering

Noise in Direct RF Sampling Concurrent Multiband Receiver

Nyquist sampling – Noise PSD

$$\frac{N_{nyq}}{B_n} \propto \frac{1}{L_q^2} \cdot \frac{\sum_{k=1}^K P_k G_k}{f_{nyq}} + N_o$$

$$\frac{N_{sub}}{B_n} \propto \frac{1}{L_q^2} \cdot \frac{\sum_{k=1}^K P_k G_k}{f_{sub}} + N_o + N_F$$

RF noise is increased by
$$\left(\left|\frac{2f_{RF}}{f_{sub}}\right| - 1\right)$$
 folds

S. Henthorn, T. O'Farrell, R.M. Anbiyaei and K.L. Ford (2021), "Concurrent Multiband Direct RF Sampling Receivers", In IEEE Transactions on Circuits and Systems 1, submitted September 2021

Concurrent Quadband HWIL SDR Testbed

Asif, S.M., Anbiyaei, M.R., Ford, K.L., O'Farrell, T. and Langley, R.J. (2019) "Low-Profile Independently- and Concurrently-Tunable Quad-band Antenna for Single Chain Sub-6GHz 5G New Radio Applications." In: IEEE Access, December 2019, open access, doi: 10.1109/ACCESS.2019.2960096

The effect of ADC resolution on concurrent, multiband, direct RF sampling receivers - Nyquist

S. Henthorn, R. Mohammadkhani, T. O'Farrell, K.L. Ford, (2021), "The effect of ADC resolution on concurrent, multiband, direct RF sampling receivers", In: Proceedings of IEEE Global Communications Conference (Globecom 2021), Madrid, Spain, 7-11 Dec 2021.

Electronic & Electrical Engineering

Conclusions

- Direct RF Sampling enables:
 - New concurrent, multiband SDR receiver architectures;
 - Low complexity, cost and power consumption;
 - Scalable RF solutions.
- The concurrent quadband SDR testbed supports many test configurations and is being extended for 5G FR2 operation.
- The techniques migrate to 6G solutions as envisaged at higher frequency bands with appropriate technology changes.
- <u>Crucially</u>, the work supports essential RF Skills development in the UK – presently developing plans to bid for a sub-THz SDR testbed.

Questions

For further details please contact Professor Timothy O'Farrell

Email: T.OFarrell@sheffield.ac.uk

Department of Electronic & Electrical Engineering, University of Sheffield, UK

