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The Regulation Regime

Main Satellite Bands:

L/S 1-3 GHz---Mobile satellites e.g.Inmarsat
C 3-7.5 GHz---Fixed satellite-now vacating in US for 5G
Ku 10-14.5 GHz---Fixed broadcast and BB-downlinks for GEO and non-GEO

Ka 20-30 GHz---Fixed BB, vHTS e.g.KaSat, Konnect, Viasatl-3. Also non-
GEO feeder and user links.

Q/V 40-50 GHz—jproposed feeders for vHTS GEO and for non-GEO.
W  70-80 GHz—proposed feeders for vHTS and for non-GEO.
» Exclusive satellite sub-bands up to and inc Ka band but not above!
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Spectrum overview Ka /Q/V/W bands
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GEO and non-GEQO satellites

« GEO-vHTS—BB Ka user beams; Ka or Q/V band feeders

Non-GEO---Constellations —-LEO—Starlink, OneWeb, (Telesat, Keiper)
--Ka feeder links and Ku user beams (Ka both feeder and user)
--Ku band uses old Skybridge agreed spectrum co-od plan
--Interference issues-complicated between all systems

* Non-GEO---MEO constellation O3b(SES) equatorial coverage

 Non-GEO to GEO Ku interference —epfd masks (ITU)

 Non-GEO to Non-GEO still TBD and rely on dynamic beam steering and
resource allocation to achieve spectral efficiency.
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Starlink —EPFD mask for Ku band BSS
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Sharing mechanisms

» Fixed exclusive frequency bands—baseline but spectrally inefficient.

« Centralised static spectrum schemes—Geographic exclusion zones based
on protection of incumbents (used in C and Ka bands)

» Centralised dynamic spectrum schemes—e.g. data base driven
( demonstrated in CoRaSat project and applicable to fixed terminals)

----Both of the above based on channel/interference modelling and I/N
thresholds—not based on QoS.

» Distributed dynamic spectrum schemes —based on cognitive spectrum
sensing and brokerage engines.

Above needed where mobility of users or satellites is involved.
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Centralised static schemes

* 17.3t017.7 GHz band allocated
iteerence level GBW/MHe) primary to BSS uplinks.

W’; m Ec}z * Modelling of interference from FS
£ F— s
- / [ B

links in the UK using data from
regulators.

ey . 0
"ﬁ? “ Js/ St  Interference contours demonstrating
& i exclusion zones for vsat installation.
W « Areasaround BSS up-links which are
few.
* Mostareasin the UK would be free of
interference.
*  Similar studies have been performed
at C band.

« Exclusion bands are static and hence
do not provide optimum spectral
efficiency.
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Centralised Dynamic Scheme
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Example of all UK FS links, interfering to FSS terminal at a particular location 1 (lat of 52.5 degs, long of -0.1 degs)C
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Interfering FS links based on full ITU model

1300

0o

EeT I

1500 I

]II . W[Mih I

W wr

Spectrum Occupancy B4sed on LoS model

(X:17.7 - 19.7 GHz; Y: PSD from -160 to -130 dBW/MHz )

me

e

- . li i

Spectrum Occupancy based on full ITU model
X:17.7 - 19.7 GHz; Y: PSD from -160 to -130 dBW/MHz
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Data base Driven
B T 13E UK -154.5 dBW/MHz
vl ' 0100 Spectrum availability maps
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Using FS data bases maps have been
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z ©) \‘f/; s o produced for major EU countries
- . X Var i
;} b :& * Inthe CoRaSat project these were used
30 f*;\-’ H .
3 N 'C :, Y as data bases in the satellite gateway to
ol f,f , ‘/) dynamically assign carriers.
= ‘5.;4—-@3_“,\“‘,_ - _;;%  Demonstrated on Newtec gateway
s o et ;N#A;j " equipment.
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—t =y A .
7 g &

5GIC & 6GIC 9



«ﬁ' UNIVERSITY OF

<

Satellite return link and 5G cells ( 28GHz) % SURREY

Coexistence Scenarios

g-NodeB

| 5G/FSS Deployment Area

5G/FSS Deployment Area

5G NR TDD Uplink and FSS Uplink 5G NR TDD Downlink and FSS Uplink



UNIVERSITY OF

Coexistence Scenarios: 3GPP Dense Urban Single Tier Scenario o9 SURREY

200 m g-NodeB Inter-site distance

% Deploying the FSS at the edge of
the g-NodeB cell (i.e., at 100 m)

results in a significant loss in the T e e
5G upllnk effIClenCy. Q =0 = 35° FSS elevation
80 | =D»=50° FSS elevation

» 97%, 84%, and 67% loss in
the efficiencyis observed
with 20°, 35° and 50° FSS
elevation respectively

< With a maximum tolerable loss of
5%, a protection distance of 500 m
will be required with 20° FSS

Reduction in efficiency [%]

elevatlon 00 l(I}O J(I)O 300 400 500 600 700 800 900 1000
0:0 A S‘tncter target Of S1 % efﬂC'ency Distance between FSS and g-WNodeB [m]

loss requires 640 m protection

distance.
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500 m g-NodeB Inter-site Distance

% A complete (100%) loss of the
5G uplink can be observed with

FSS/g-NodeB distance of 100 m 1006 | j ' ——————

irrespective of the FSS elevation __ ﬁ@ =0 =35° FSS elevation

ang]e_ % sor A =»=50° FSS elevation
< With a maximum tolerable loss 5 _ | ‘.&. .

of 5% and 1%, a protection = )

distance of 2 km and 3 km, = 0| |

respectively, will be required with 2

20° FSS elevation. 2 ol .
< The protection distance in the  ~

urban macro scenario is 4x-5x 0 . . 2ETCET vy S ;

the protection distance in the 0 700 1000 D00 oS00 2900 3000

Distance between F55 and g-INodeB [m]

dense urban scenario.
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Conclusions

)
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We investigated coexistence of 5G NR with FSS in the mm-wave band.
The developed model considers boththe 5G system interference and the coexistenceinterference.

Several 5G NR features are exploited to enable the coexistence (antenna arrays, adaptive
coding/modulation) with a controllable expense/penalty.

% To develop a generic framework applicable to different 5G configurations and frame structures, we

proposed using the resource element efficiency as a measure for the tolerable loss, i.e., sharing
constraint.

+ Simulation results indicate that the 5G deploymentscenariois a key factorin determining the
protection area.
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» Wefoundthat 5G deploymentin urban macro scenarios requires 400% increase in the
protectiondistance compared with 5G deploymentin dense urban scenarios.
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Conclusions and future work

» Future spectrum sharing is essential to meet capacity demands.
= Geographic exclusion zones are not spectrally efficient

= Dynamic data base systems can increase spectral efficiency for fixed
terminal systems but have practical limitations for mobility

= Distributed cognitive sensing schemes with brokerage can improve spectral
efficiency for mobile systems but accurate spectrum sensing is an issue

= Two key spectrum co-existence areas are;
Non-GEO to Non GEO satellite
5G cellular to satellite

= Distributed cognitive spectrum sharing is a key enabler for 6G.
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