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Spectrum-efficient transmit beamforming

Spectrum efficiency vs antennas
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Why not optimal solution? Complexity

* Numerical optimisation

* Channel estimation overhead

* Scalability (>100s to achieve capacity@128
antennas)

Spectrum Efficiency (bps/Hz)

Impact of delay using measured data
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Is deep learning the solution?

* Large data

* No performance guarantee

e Data-driven, ignore model information
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Neural network + Model information via Signal processing

Neural network module Beamforming recovery module
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Model information: solution structure, sum rate
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W. Xia, G. Zheng, K. K. Wong, and H. Zhu, “Model-Driven Beamforming Neural Networks,” IEEE Wireless Communications, Feb. 2020.
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Model-driven BNN achieves the best tradeoff between performance and complexity.

Large-scale fading channel, 30 dBm transmit power Large-scale fading channel, 30 dBm transmit power
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W. Xia, G. Zheng, Y. Zhu, J. Zhang, J. Wang and A. P. Petropulu, "A Deep Learning Framework for Optimization of MISO Downlink
Beamforming," IEEE TCOM, Mar. 2020.
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* High overhead in obtaining the downlink channel-> Learning from uplink
* Traditional two-stage process: channel estimation, then beamforming optimisation
* Good channel estimation does not guarantee good end performance

Model-driven learning: joint downlink channel estimation and rate maximization
Model information: solution structure, objective function P
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Multi-cell FDD Massive MIMO: Joint and model-driven
learning is key to guarantee the end performance.

J. Zhang, M. You, G. Zheng, I. Krikidis, and L. Zhao, “Model-driven Learning for Generic MIMO Downlink Beamforming With Uplink Channel
Information”, to appear in IEEE TWC.
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06 Data-driven GNN: Y. Shen, Y. Shi, J. Zhang and K. B. Letaief, “Graph neural
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O Adaptive Resource Optimisation in Dynamic Environments (Model mismatch challenge)

* Y.Yuan, G. Zheng, K. K. Wong, and K. B. Letaief, “Meta-Reinforcement Learning Based Resource Allocation for Dynamic V2X
Communications,” to appear in IEEE Trans. Veh. Technol.

e J.Zhang, Y. Yuan, G. Zheng, I. Krikidis and K. K. Wong, “Embedding Model Based Fast Meta Learning for Downlink Beamforming
Adaptation,” to appear in IEEE Trans. Wireless Commun.

* Y.Yuan, G. Zheng, K. K. Wong, B. Ottersten, and Z.-Q. Luo, “Transfer learning and meta learning based fast downlink
beamforming adaptation,” IEEE Trans. Wireless Commun., Mar. 2021.

*  X.Zhang, G. Zheng, and S. Lambotharan, “Trajectory Design for UAV-Assisted Emergency Communications: A Transfer Learning
Approach” IEEE GLOBECOM 7-11 December 2020, Taipei, Taiwan.

U Robust Radio Signal Classification against Smart Adversarial Attacks

* L.Zhang, S. Lambotharan, G. Zheng, B. AsSadhan and F. Roli, “ Countermeasures Against Adversarial Examples in Radio Signal
Classification, ” IEEE WCL, Aug. 2021.

* L.Zhang, S. Lambotharan, G. Zheng, F. Roli, “A Neural Rejection System Against Universal Adversarial Perturbations in Radio Signal
Classification,” IEEE GLOBECOM, December 2021, Madrid, Spain.
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- Multi-armed bandit (MAB) algorithm
- Real-time spectrum sensing + past observations
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M. You, X. Zhang, G. Zheng, J. Jiang, and H. Sun, “A versatile software defined

smart grid testbed: Artificial intelligence enhanced real-time co-evaluation of
ICT systems and power systems,” IEEE Access, vol. 8, 2020.



i}_ Loughborough _ _
g University Al-enabled Massive MIMO Project

Title: AIMM (Al-enabled Massive MIMO)
C > ceLtic-NEXT

Project Lead: Arman Shojaeifard (InterDigital Europe)

Next Generation Telecommunications

Clusters: UK, Germany, Canada

y .’é University of
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Duration: 2 years (Oct 2020—Sep 2022)

Budget (total): 3,167.6 K€ U> Interd lgltol o Vilicom

# Work-Packages: 6 : signalling the future

Website: https://aimm.celticnext.eu/ / ' }i CEMWORKS
Universitat

“The AIMM project targets radical performance
improvements and efficiency dividends for 5G and beyond
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Radio Access Network (RAN) through advanced antenna & [ Briemisciun C d...
array (Massive MIMO) and Reconfigurable Intelligent |nn0V8te UK ] oot Lo E%EE

Surface (RIS) technologies powered through and managed
by the latest advancements in Al.”
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Distributed OTA Cell-less MIMO Testbed
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Intra-cluster:

1). The UEs are jointly served by all
APs within one cluster.

2). The cluster-member AP sends
CSl/pilots to the Master AP.

3). Master AP sends DL beamforming
to the cluster-member APs.

Inter-cluster:

1). The border APs send CSl/pilots to
neighbour Master APs.

2). No cooperation is required
between clusters.




11

i%- Loughborough
p University Conclusions

What we have done:
 Model-driven Al to improve accuracy, reduce required labelled data
* Focused on complexities: optimisation, channel estimation and scalability

Looking forward:

* Nonlinear precoding, other resource optimisation problems

* From model-driven to knowledge-driven Al

* Make Al an effective, reliable and robust tool for 6G and beyond
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