Machine Learning for 6G Physical Layer Design and Interference Control

Prof. Maziar Nekovee

m.nekovee@sussex.ac.uk

6G LAB @sussex.ac.uk Skth Generation Mobile Communications R&I Lab at University of Sussex (We create the future today!)

AI at the RAN:

- Intelligent initial access and handover
- Dynamic beam-management
- Model-free PHY Design

AI at the transport layer (Fronthaul, backhaul)

- Traffic pattern estimation and prediction
- Flexible functional split...

AI at the Core and Edge:

- Next Generation NFV and SDN
- Intelligent network slicing management
- service prioritization and resource sharing
- Intelligent fault localization and prediction
- Security and intrusion detection

Other areas of interest

• TCP/IP suit of protocols.

Deep Learning approaches for beyond 5G/6G PHY Design

- Conventional PHY Design (3G, 4G, 5G)
 - 3G and 4G design was for known applications (voice, video, data) and deployment scenarios
 - 5G should work for yet unknown applications (verticals) and deployment
- AI- Based PHY Design (beyond 5G/6G)
 - Holistic optimization of the entire PHY processing blocks
 - Data-driven, end-to-end learning solution so reduces design cycle
 - Can adapt to changing applications and deployment environments (including channel)
 - Data-driven, end-to-end learning solution so reduces design cycle

T.O'Shea and J.Hoydis, "An introduction to deep learning for the physical layer, " IEEE Transactions on Cognitive Communications and Networking," IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, 2017.

School of Engineering and Informatics

System overview

System block diagram of an adaptive deep learning (ADL) based AE for a wireless communication interference channel with *m*-user.

Ref: D Wu, M Nekovee, Y Wang, "An Adaptive Deep Learning Algorithm Based Autoencoder for Interference Channels" 2nd IFIP International Conference on Machine Learning for Networking (MLN'2019),; IEEE Access 2020

Algorithms

The structure of the AE:

Block name	Layer name	Output Dim
	input:	M
Block name	Dense+eLu	M
	Dense+Linear	2n
	nomalization	2n
Channel	Noise	2n
Decoder	Dense+ReLU	M
	Dense+Softmax	M
Name	$[\sigma(u)]_i$	range
ReLU	$\max(0, U_i)$	$[0,\infty)$
Tanh	$tanh(U_i)$	(-1, 1)
Softmax	$\frac{e^{u_i}}{\sum_j e(u_j)}$	(0, 1)

The ARL algorithm estimates the interference (α) .

With the predicted α , channel function is updated. Then signals are decoded.

The proposed ADL algorithm:

_			
Algorithm 1: DRL to predict the interference			
	Input : • AE model and specifications: n, k , batch size,		
	epochs number, optimizer, learning rate, etc		
	• the training data set l_{in}		
	• the variance of channel noise σ^2		
	Output: • the estimated interference parameter α		
1	Initialize:		
2	Set AE model parameters (e.g., $n \leftarrow 4, k \leftarrow 4, M \leftarrow 4$)		
3	3 for i in range (training data samples) do		
4	Set $x = f(s_i) \in \mathbb{R}^{2n}$, $s_i \in \{1, 2 \dots M\}$, encoding		
5	Create and Set $\hat{y}(n)$ for receiver layer		
6	for <i>i</i> in range (numble of guessing α) do		
7	DNN layer to training the data set		
8	Recovery pilot signal \hat{s}_i according to a guessing α		
9	Calculate reward \hat{R}_i according to Eqs. (5) and (6)		
10	Set confidence interval of \hat{R}_i and predict α		

11 Update DNN layer with α according to Eqs. (7) to (10)

Numerical results and analysis (single user)

Bit error rate and symbol error rate vs SNR ($E_{\rm b}/N_0$) for the AE and other modulation schemes (single user case).

Learned AE constellation produced by AE for single user case: (a) AE-1-1, (b) AE-2-2, (c) AE-3-3 and (d) AE-4-4. (e) AE-1-2, (f) AE-1-3, (g) AE-1-4, (h) AE-1-5.

Numerical results and analysis (multiple users)

FIGURE7: Bit error rate vs SNR (E_b/N_0) of AE and several modulation schemes with MMSE equalizer for two-user symmetric and asymmetric interference channel.

Numerical results and analysis (multi-user)

Normalized reward versus predicted α : strong interference $\alpha = 1.5$ and very strong interference $\alpha = 2.0$

Without adaptive learning the DL-based PHY is less robust than conventional PHY

BER versus SNR: comparison for strong and very strong interference channel, with and without the proposed DRL algorithm

- A predicted α (interference) can be obtained through a learning
- ADL based AE is capable of robust performance over the entire range of interference levels, even for the worst case in a very strong interference channel

Concurrent DL for distributed multi-user interference scenario

• 3 and 5 interfering BS randomly distributed in 200x200m

 $PL = 32.4 + 21 \log d + 20 \log(f_c) + \sigma_{SF}$

Ref: L. Pellatt, D Wu, M Nekovee, "Deep Learning based Autoencoder for Concurrent Learning of the Interference channel", IEEE Comm. Letters (Su

Adverbial DL for distributed two-user interference scenario

 A Concurrent Deep Learning based auto encoder for the scenario of a two-user interference channel: the visualization demo of the constellation evolving as learning progress/

Ref: L. Platt, D Wu, M Nekovee, "Deep Learning based Autoencoder for Concurrent Learning of the Interference channel", IEEE ISCW 2021 (published)

AI for 5G/beyond-5G Fronhaul slicing

 Next generation fronthaul interface (NGFI) targets redefining flexibility and network function split between Raddio Remote Aggregation Units (RRU)s and Radio Cloud Centre (RCC).

- Orchesstrator Engine dynamically split the traffic on UL and DL per RAU across multiple fronthaul slice based on predicted levels of load, ensuring for each slice end-user requirements are met.
- The Orchestrator Engine balances the bandwidth reservation versus latency provision across different frothaul slices in an on-demand fashion by learning the load patterns and dynamic functional split per RAU-RCC

Ref: M. Nekovee, Wu, Wang, Shariat, "Artificial Intelligence and Data Analytics in 5G/beyond-5G Wireless Networks", in AI for Emerging Verticals, IET Publishing 2020

Microservice Architecture: Benefits vs Overheads

Automating Micro-service aggregation/deaggregation with ML

- How to decompose a network function?
 - Machine learning can help in deciding decomposition by predicting
 - A resource intensive micro-function
 - A faulty subcomponent
 - Anomaly detections
 - Optimal placements of micro-functions_{A monolith allows your}
 - QoS of micro functions
- Troubleshoot a micro-service network
 - Machine learning can help find which micro-service is actually causing problem

Nekovee et al, Towards AI-enabled Microservice Architecture for Network Function Virtualization, Proc. IEEE ComNet 2020

Conclusion

- Adaptive DL auto-encoder is a promising approach for design of next generation Physical Layer
- Outperform conventional PHY in scenarios where a-priori modelling of the environment (channel, interference) is not tractable or takes significant time
 - High interference 6G small cell networks^
 - 6G vertical application environments (manufacturing, health etc)
- For *non-cooperative interference scenarios* the problem has a zero-sum game theoretic formulation, convergence to Nash-equilibrium through concurrent DL
- Our ultimate aim is to significantly reduce the time to standardisation release of beyond-5G/6G PHY design by using learning-based adaptive design
- Other promising applications are AI/ML for next generation core and edge design with microservices and fronthaul

THANK YOU!

m.nekovee@sussex.ac.uk

<u>Acknowledgments</u>

Dehao Wu, Lloyd Pellatt, U. Sussex, UK Yue Wang, Samsung R&D UK Sachin Sharma, NCI, Ireland Avishek Nag, UCD, Ireland