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Al at the RAN:

¢ Intelligent initial access and handover
e Dynamic beam-management

e Model-free PHY Design
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/AI at the Core and Edge:
¢ Next Generation NFV and SDN
Intelligent network slicing management

Security and intrusion detection

\_

service prioritization and resource sharing
Intelligent fault localization and prediction
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Al at the transport layer (Fronthaul, backhaul)
e Traffic pattern estimation and prediction
¢ Flexible functional split...
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Other areas of interest
e TCP/IP suit of protocols.
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Deep Learning approaches for beyond 5G/6G PHY Design
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processing blocks > L ORI ;
« Data-driven, end-to-end learning solution o I
so reduces design cycle TTYNOESY - h
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° Data_driven end_to_end |earning solution " IEEE Transactions on Cognitive Communications and Networking,” IEEE

Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-
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Interference Channels — Challenges and Potential Solutions

Multiple functional Imperfection
blocks (optimisation) (hardware or channel
model)
-
-

= Equalization

= Multi-objective = Equalization

= Adaptive/advanced

optimization -
modulation
-v Strong and very " Compensation
DL based end-to- ~ strong v
end optimisation interference ML based
(Multiple users) Reconstruction
-
= Online learning AE and DRL
= Adaptive algorithm applied
algorithms
Data-driven lls
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System overview
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System block diagram of an adaptive deep learning (ADL) based AE for a wireless communication
interference channel with m-user.

Ref: D Wu, M Nekovee, Y Wang, “An Adaptive Deep Learning Algorithm Based Autoencoder for Interference Channels” 2nd IFIP International Conference on
Machine Learning for Networking (MLN'2019),; IEEE Access 2020



Algorithms

The structure of the AE: The proposed ADL algorithm:
Block name | Layer name Output Dim Algorithm 1: DRL to predict the interference
input: M Input : e AE model and specifications: n, k, batch size,
Block name | Dense+eLu M epochs number, optimizer, learning rate, etc
Dense+Linear 2n e the training data set [,
nomalization 2n K . 5
Channel Noiwe 5n e the variance of channel noise o
Decoder Dense+ReLU ¥ Output: e the estimated interference parameter o
Dense+Softmax M 1 Initialize:
Name [ (u)]i range 2 Set AE model parameters (e.g., n +4, k +4, M +4)
ReLU max(0, U;) [0. c0) 3 for i in range (training data samples) do
Tm}h m};%"“ 1, 1) 4 Setx=f(s;) € R, s; € {1,2... M}, encoding
Softmax > eluy) © b s Create and Set ¢(n) for receiver layer
6 for ¢ in range (numble of guessing «) do
7 DNN layer to training the data set
8 Recovery pilot signal §; according to a guessing «

The ARL algorithm estimates the
interference ().

With the predicted «, channel
function is updated. Then signals are
decoded.

Calculate reward I:?z- according to Egs. (5) and (6)
10 Set confidence interval of F; and predict o«
1 Update DNN layer with e according to Egs. (7) to (10)
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Numerical results and analysis (single user)
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Bit error rate and symbol error rate vs SNR (E,/N,) for the AE and other modulation schemes (single user case).
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Learned AE constellation produced by AE for single user case: (a) AE-1-1, (b) AE-2-2, (c) AE-3-3 and (d) AE-4-4. (e) AE-1-2, (f) AE-
1-3, (g) AE-1-4, (h) AE-1-5.



Numerical results and analysis (multiple users)
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FIGURE7: Bit error rate vs SNR (E}/Np) of AE and several modulation schemes with MMSE equalizer for two-user symmetric
and asymmetric interference channel.



Numerical results and analysis (multi-user)
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Without adaptive learning the DL-based
PHY is less robust than conventional PHY

= Apredicted o (interference) can be obtained through a learning

= ADL based AE is capable of robust performance over the entire range of
interference levels, even for the worst case in a very strong interference channel

Ref: D Wu, M Nekovee, Y Wang, “Deep Learning based Autoencoder for m-user Wireless Interference Channel Physical Layer design”, IEEE Acess 2020



Concurrent DL for distributed multi-user interference scenario
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= 3and 5 interfering BS randomly distributed in 200x200m PL =324 +21logd + 201og(f.) + osr

Ref: L. Pellatt, D Wu, M Nekovee, “Deep Learning based Autoencoder for Concurrent Learning of the Interference channel”, IEEE Comm. Letters (Su



Adverbial DL for distributed two-user interference scenario

Autoencoder learning process visualised

% User 1 learned constellation
24 % User 2 learned constellation
o User 1 received signals
User 2 received signals
‘l -
Zero sum two-player game
0 .
Converges to Nash equilibrium
_1 .
_2 m

= A Concurrent Deep Learning based auto encoder for the scenario of a two-user
interference channel: the visualization demo of the constellation evolving as
learning progress/

Ref: L. Platt, D Wu, M Nekovee, “Deep Learning based Autoencoder for Concurrent Learning of the Interference channel”, IEEE ISCW 2021 (published)



Al for 5G/beyond-5G Fronhaul slicing

W Nt " Comminead i_nEc _______ ': = Next generation fronthaul

= ::Emf; — | interface ~ (NGFI) targets

— . e | g redefining flexibility and network

e function split between Raddio

w6 | T 5 £ H Network Core Remote  Aggregation  Units

O Wi T e (RRU)s and Radio Cloud Centre
| S | (RCC).

= Orchesstrator Engine dynamically split the traffic on UL and DL per RAU across
multiple fronthaul slice based on predicted levels of load, ensuring for each slice
end-user requirements are met.

= The Orchestrator Engine balances the bandwidth reservation versus latency
provision across different frothaul slices in an on-demand fashion by learning the
load patterns and dynamic fumctional split per RAU-RCC

Ref: M. Nekovee, Wu, Wang, Shariat, “Artificial Intelligence and Data Analytics in
5G/beyond-5G Wireless Networks”, in Al for Emerging Verticals, IET Publishing 2020



Microservice Architecture: Benefits vs Overheads

o —>

Software reuse

OVERHEADS 9

Upgradation

Fault tolerance
Security

Microservice
Architecture

Communication
overhead

Simplified
development

Simplified
testing

v For cloud services

benefits outweigh
overheads.

Cloud companies are
rapidly adopting micro
services ( Ali Baba,
Amazon, Netflix)

> For telco’s network

service (core functions)
microservice adoption
requires careful design to
see benefits

The problem is complex
interdependencies




Automating Micro-service aggregation/de-
aggregation with ML

microservices (Y
. architecture is risky
* How to decompose a network function? . ""‘.” 'y

* Machine Iggrning can h.elp in deciding & — >
decomposition by predicting

* Aresource intensive micro-function ©
A faulty subcomponent Jt
Anomaly detections

Optimal placements of micro-functions . monsih ariows yolko

explore both the compRgxity

QoS of micro functions of a system and its

component boundaries

Cintinue breaking out
spfvices as your knowledge
I boundaries and service
management increases

As complexity rises start
breaking out some
microservices

* Troubleshoot a micro-service network

* Machine learning can help find which micro-service
is actually causing problem

Nekovee et al, Towards Al-enabled Microservice Architecture for
Network Function Virtualization, Proc. IEEE ComNet 2020



Conclusion

Adaptive DL auto-encoder is a promising approach for design of next generation Physical
Layer

Outperform conventional PHY in scenarios where a-priori modelling of the environment
(channel, interference) is not tractable or takes significant time

= High interference 6G small cell networks”
= 6G vertical application environments (manufacturing, health etc)

For non-cooperative interference scenarios the problem has a zero-sum game theoretic
formulation, convergence to Nash-equilibrium through concurrent DL

Our ultimate aim is to significantly reduce the time to standardisation release of beyond-
5G/6G PHY design by using learning-based adaptive design

Other promising applications are AlI/ML for next generation core and edge design with
microservices and fronthaul
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