6G : spectrum and new 3GPP standards roadmap

UK future spectrum policy Summit 16th May 2025 5 min www.thalesgroup.com

3GPP NTN technology is being rolled-out

Deployment scenarios	А	В	С	D	E	F	
Service	lo	IoT-NTN, Messaging & voice			Broadband		
3GPP NTN RAT	IoT-NTN	IoT-NTN	IoT-NTN	NR-NTN	NR-NTN	NR-NTN	
Orbit	GSO	NGSO	NGSO	NGSO	GSO	NGSO	
Duplex mode	FDD	FDD	TDD	FDD	FDD	FDD	
Payload	Transparent	Transparent/Regenerative			Transparent	Regenerative	
Bands	Below 7.125 GHz (e.g. L/S bands) A				Above 10 GHz (e.g. Ku/Ka band)		
Targeted devices	IoT & Smartphones (D2D)			Smartphones	tphones Fiexed and Mobile VSAT		
Potential SNOs	EchoStar Viasat/Inmarsat Ligado TerreStar Solutions Thuraya	Sateliot OQT EchoStar OmniSpace	Iridium	Echostar, MSS-A	Hispasat Intelsat, JSAT, KTSAT, Ovzon Eutelsat Group	SpaceRISE Eutelsat Group	
Earliest service opening for each scenario (and related 3GPP releases)		2024 2025 ▲ A ▲ B	2026	2027 2028 E		2030	
	R	el-17 Rel-17/18	Rel-19 Rel-1	8/19 Rel-	17/18 Rel-	18/19	

REF xxxxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-007

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2023 THALES. All rights reserved.

6G-NTN: 2 family use cases

- Satellite connectivity to smart phones and IoT devices (D2D) in frequency bands up to 7.125 GHz
 - -enhanced performances compared to 5G (data rate, coverage, throughput, ..)
 - Potential new spectrum: e.g. see ITU WRC-2027 AI
 - > 1.12: New MSS allocations for low data rate NGSO
 - > 1.13: New MSS allocations in certain bands below 2.7 GHz identified for IMT to complement terrestrial coverage (D2C)
 - > 1.14: New MSS allocations
- Satellite connectivity to vehicle/building mounted devices (Flat Panel Antenna) in frequency bands above 10 GHz (e.g. Ku, Ka, Q/V band).
 - Terminal (SWAP) adapted to vehicles from the automotive, public safety, transport (aeronautic, railways, drone, maritime), utilities, agriculture and media & entertainment sectors are assumed.
 - Potential new spectrum: Q/V band

NTN in 6G: Service Requirements (via satellite access network)

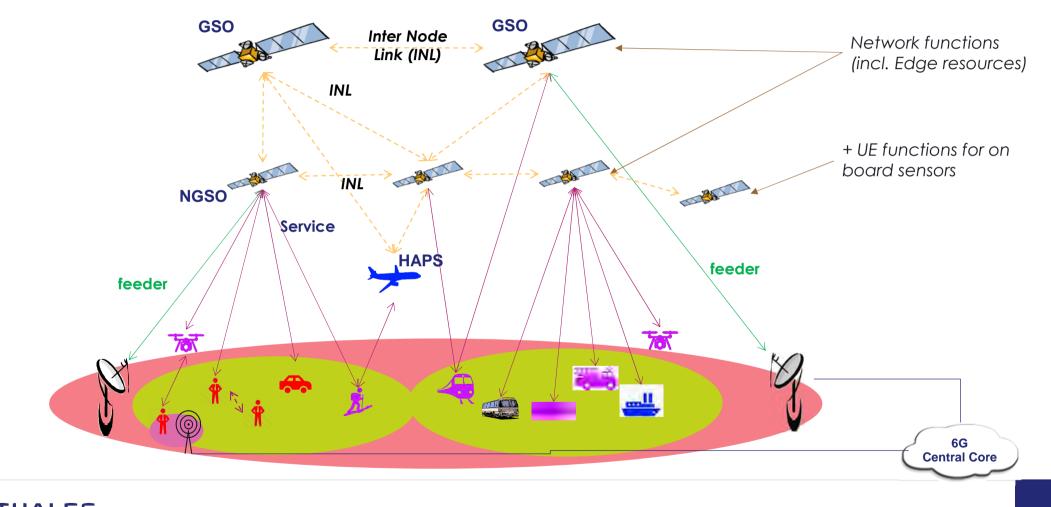
Improved user experience

- Improved service continuity over the coverage
 - Enhanced NTN/TN mobility/multi connectivity especially in connected mode
- Improved coverage
 - Provision of emergency services (at least SMS) via satellite in <u>light indoor/in vehicle conditions</u>
 - Mobility in sub-urban/dense forest (i.e. several hundred ms fading duration)
- Support of device diversity
 - Handheld/IoT, vehicle/drone mounted
- Improved data rate/throughput

Improved network capabilities

- Resiliency
 - GNSS independent operation (i.e. initial access, ..)
 - GNSS independent capability for the UE to determinate its location
 - Service continuity with respect to temporary failure of a given node (e.g. NGSO, GSO, HAPS, TN node);
 - Fast set-up of an autonomous network over a specific region via satellite(s) and/or HAPS with no or intermittent connectivity to core networks (e.g. for crisis response)
- **Sustainability**: Minimise overall consumption
 - Energy based access network selection: under traffic or zero traffic conditions
- Overall spectrum usage efficiency
 - Multi access technology spectrum coexistence (i.e. NTN/TN)

4


NTN in 6G: Possible performances

Target service performances	NTN in 5G (As per 3GPP &/or ITU-R IMT2020 satellite requirements)	NTN in 6G	
Peak data rate (DL/UL) wrt smartphones & low cost IoT devices	1/0.1 Mbps (Outdoor only) @ up to 3 km/h	Outdoor conditions: Tens of Mbps @ up to 250 km/h Light indoor/in car conditions: At least Short Message Service capability	
Peak data rate (DL/UL) wrt Vehicle or drone (flying and surface) mounted devices	[50/25] Mbps @ up to 250 km/h (with 60 cm aperture)	Hundreds of Mbps (Outdoor only) @ up to 250 km/h (with <20 cm equivalent aperture)	
Peak data rate (DL/UL) wrt Large Aeronautic, maritime platforms mounted devices	[50/25] Mbps @ up to 1000 km/h	Thousands of Mbps (Outdoor only) @ up to 1200 km/h (with <60 cm equivalent aperture)	
Location service (target accuracy and acquisition time) in outdoor conditions only	respectively 1 meter and < 100 seconds (reliability through Network verification)	respectively 100 meter (TBC) @ 95% reliability through RAT dependent positioning method	
Coverage	Outdoor only	Maximum Coupling Loss able to address light indoor/In car	

5

NTN in 6G: 3D Network architecture concept

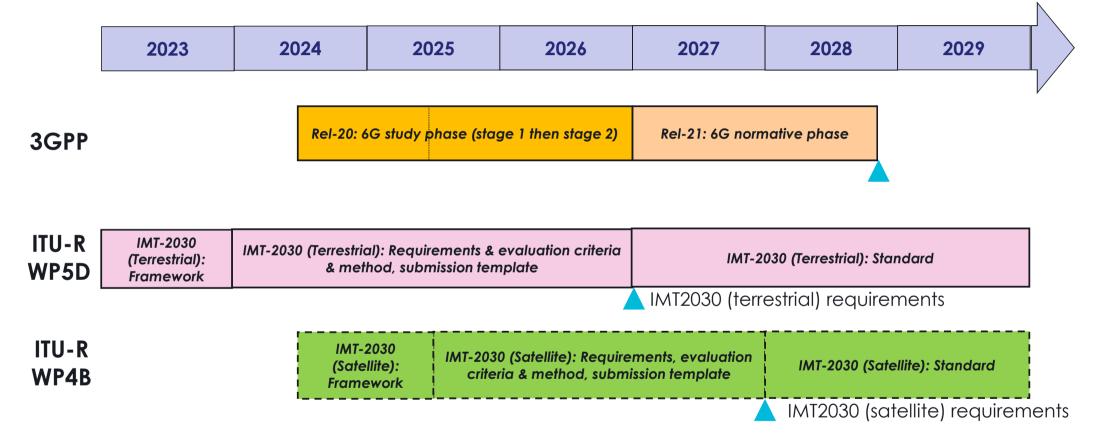
6

Sustainability in NTN for 6G

> Mega constellation based satellite network:

- a LEO space segment able to provide global coverage but oversized to meet a peak traffic demand over a specific geographical area and setting high constraints on the coexistence with other constellations,
- satellites with short lifetime leading to high replacement rate,
- a relatively high average power consumption of the terminal due to continuous tracking of the successive serving satellites.

> Vs Multi orbit satellite network


- space segment level
 - Take advantage of
 - > GEO for broadcast/multicast traffic, and common signalling (e.g. idle mode)
 - > MEO for navigation and broadband traffic
 - > LEO for broadband traffic
 - Optimization of
 - > LEO sizing (overall mass to be launched) to the average traffic demand
 - => off load to MEO or GEO the geographically localized and/or temporary peak traffic demand,
 - > LEO and MEO space segment power and extended lifetime
 - > => Beam deactivation when no traffic demand

- Terminal level
 - Energy saving:
 - served via the GSO space segment when in idle mode state. (no satellite tracking)

TN = Terrestrial Network NTN = Non Terrestrial Networks (Satellite, HAPS)

6G TN & NTN: 3GPP and ITU-R

Calendar is driven by the terrestrial component of 6G!

REF xxxxxxxxxx rev xxx – date Name of the company / Template: 87211168-DOC-GRP-EN-007
This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales © 2023 THALES. All rights reserved.

Nicolas Chuberre 5G/6G Solution Line Manager

+33 6 80 94 84 32

□ nicolas.chuberre@thalesaleniaspace.com

Note that

- the views expressed in this presentation may not necessarily be the ones of Thales Alenia Space
- Part of the content of this presentation leverages the outcomes of the Horizon Europe 6G-NTN R&D project

Some references

- « 3GPP Non-Terrestrial Network: A Global Standard for Satellite Communication Systems », Special Issue of the International Journal of Satellite Communications and Networking, Pages: 217-301, Edited by Mohamed El Jaafari and Nicolas Chuberre, published by Wiley, May/June 2023,
 - https://onlinelibrary.wiley.com/toc/15420981/2023/41/3
- « 5G Non-Terrestrial Networks » by Prof. Alessandro Vanelli-Coralli, Mohamed El Jaafari, Nicolas Chuberre, Gino Masini, Alessandro Guidotti, published by Wiley-IEEE Press, 12th January 2024
 - <u>https://www.amazon.co.uk/5G-Non-Terrestrial-Networks-Vanelli-Coralli/dp/1119891159</u>

5G Non-Terrestrial Networks

Technologies, Standards, and System Design

Alessandro Vanelli-Coralli I Nicolas Chuberre Gino Masini I Alessandro Guidotti Mohamed El Jaafari

THALES Proprietary information

REF xxxxxxxx rev xxx - date Name of the company / Template: 87211168-DOC-GRP-EN-007 This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales @ 2023 THALES. All rights reserved.