UK SPF PLENARY

Thursday 24 July 2025 14:00 - 16:00

Housekeeping

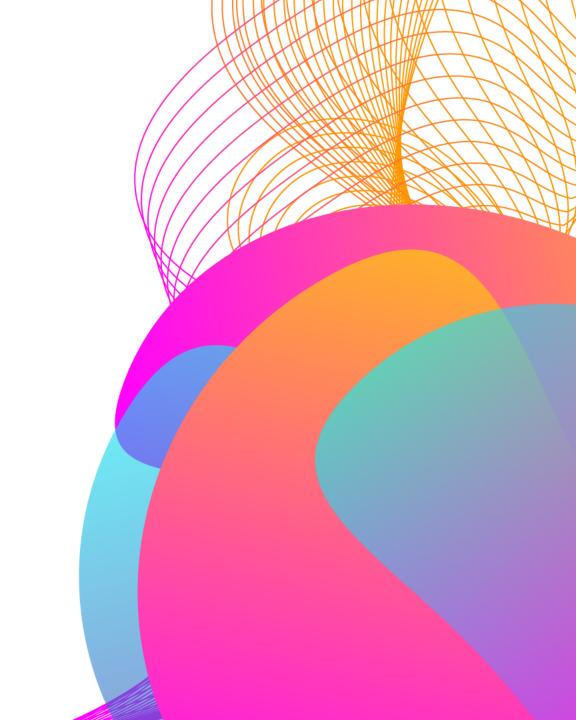
- This session is held under Chatham House rule please do not record this session
- Slides will be shared with speakers' permission
- Unless you are a speaker, please keep yourself on mute and your camera off

Plenary Agenda

14:00 - 14:10	Intro & keynote speakers	Abhaya Sumanasena, UK SPF & Real Wireless
14:10 - 14:25	Spectrum policy for the future of connectivity	Sophie Lyddon, DSIT
14:25 – 15:30	Wireless communications policy: reflections on the road ahead Presentations and Q&A	Paul Febvre, UKTIN NTN WG Jussi Kahtava, Samsung Simon Saunders OBE, Federated Telecoms Hubs
15:30 – 15:35	Steering Board update	Abhaya Sumanasena, UK SPF & Real Wireless
15:35 - 15:55	Cluster Chair updates	UK SPF Cluster Chairs
15:55 - 16:00	AOB and Close	Abhaya Sumanasena, UK SPF & Real Wireless

Intro & Welcome

Dr Abhaya Sumanasena, Real Wireless & UK SPF Chair


Spectrum policy for the future of connectivity

Sophie Lyddon, DSIT

Spectrum Policy Forum

Sophie Lyddon Head of Spectrum Policy, DSIT

DSIT SPECTRUM POLICY TEAM

Head of Spectrum Team Sophie Lyddon

Spectrum Innovation Laura Mejuto Iglesias

Domestic Spectrum Ed Freeman

International Spectrum Hugh Sharman

Spectrum Governance Ian Dewhurst

Spectrum Policy Advisor Johanna Ekloef

Spectrum Policy Advisor Jibril Farah

STRATEGIC DEFENCE REVIEW

- Published 02 June 2025: government accepted and endorsed all recommendations in the review.
- Establishing a more lethal 'integrated force' equipped for the future, and strengthened homeland defence: five domains.
- Establish a new Cyber and Electromagnetic Command to lead overarching strategy on electro-magnetic warfare, shape standards in alignment with NATO, and provide single point of contact for armed forces on CyberEM.
- Spectrum Coordination Office to coordinate spectrum operations, support civilianmilitary coordination.

THE 10 YEAR INFRASTRUCTURE STRATEGY

- Department for Science, Innovation & Technology
- Published 10 June 2025: aligns with government's mission to take a 'digital first' approach and ensure that digital infrastructure is at the heart of future infrastructure projects.
- Highlights that, as the National Infrastructure Commission recommended, telecommunications needs must be considered for individual sectors – across the energy, water and transport sectors.
- Commits government to working closely with Ofcom and other relevant regulators to set out the government's assessment of the telecommunications needs for given sectors by the end of 2026.

THE INDUSTRIAL STRATEGY

- Published 23 June 2025: 10-year plan to increase business investment and grow the industries of the future in the UK.
- Six frontier technologies, including Advanced Connectivity Technologies (ACT)
- Digital and Technologies Sector Plan: Ensuring spectrum availability to support ACT by working with international counterparts ahead of the World Radio Conference 2027 and collaborating with Ofcom to promote efficient, innovative spectrum allocation and regulation, which continues to support the development and deployment of ACT.

PUBLIC SECTOR SPECTRUM FRAMEWORK

- Department for Science, Innovation & Technology
- Published 09 July 2025: an enduring framework with a focus on periodic reviews of Crown spectrum demand, reviewed alongside inputs from Ofcom on demand for spectrum access from civil users, and innovative approaches to enabling shared use of spectrum.
- Primary goals in establishing this framework include:
 - o ensuring that Crown spectrum users have access to the spectrum they need to support strategic government priorities and deliver critical services.
 - ensuring efficient use of spectrum and enable opportunities to maximise spectrum value and support growth by sharing spectrum with civil applications, where possible.

SPECTRUM SANDBOX REPORTS; RESILIENCE ACTION PLAN

- Spectrum Sandbox reports published 09 July 2025, alongside the Public Sector Spectrum Framework.
- These reports were the final reports produced by each sandbox consortia as part of the March 2024-March 2025 programme.
- Resilience Action Plan published 14 July and highlights the UK Telecoms Lab as an HMG investment in resilient infrastructure

STATEMENT OF STRATEGIC PRIORITIES

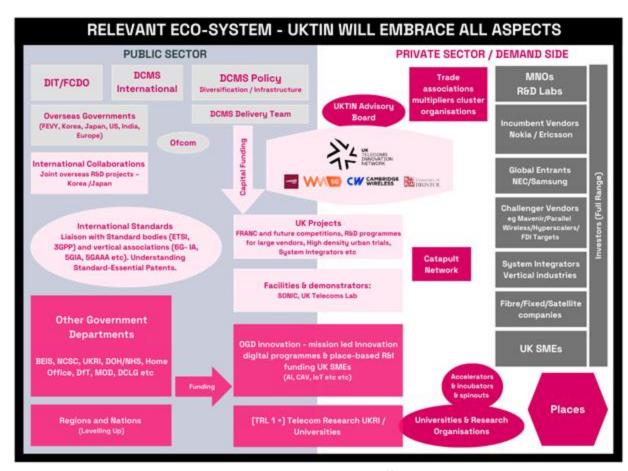
- SSP consultation published 21 July 2025 and is open for responses until 23:59 on 18
 September.
- This document sets out the government's priorities across telecoms, spectrum and postal services. Ofcom must have regard to the statement when exercising its regulatory functions.
- Areas of focus include spectrum sharing and innovation, supporting space ambitions, PMSE, FOTV, utilities, transport, and the public sector.

Wireless communications policy: reflections on the road ahead

Paul Febvre, UKTIN NTN WG

Jussi Kahtava, Samsung

Simon Saunders OBE, Federated Telecoms Hubs


1. CONTEXT

COMPLEX & FRAGMENTED ECOSYSTEM

- The global telco sector is potentially transforming from into a more open networking ecosystem
- An opportunity and challenge vital to the UK's Security and Economic interests
- A complex fragmented ecosystem that requires coordinated strategy led by experts

Public Sector
Private Sector/Demand Side
Telecom Industry
DCMS Funded Interventions
OGD Funded Interventions

2. AIMS

- VISION. A thriving, resilient, and diversified UK telecoms ecosystem that attracts investment, and drives innovation and growth
- MISSION. Transform the UK telecoms innovation ecosystem, by forging connections and aligning the sector, enabling the UK to capitalise on its strengths as new opportunities emerge in telecoms.
- ▶ **PROPOSITION.** UKTIN is an inclusive and collaborative forum for the UK telecoms innovation ecosystem, bringing together industry, government, and academia to catalyse R&D investment, cooperation, and commercialisation

CROSS-GOVERNMENTAL GROUP

DISSEMINATION TO INDUSTRY

The Expert Working Groups (EWGs), Strategic Working Groups (SWGs) and Advisory Board (AB)

Strengths

Gaps

Overlaps

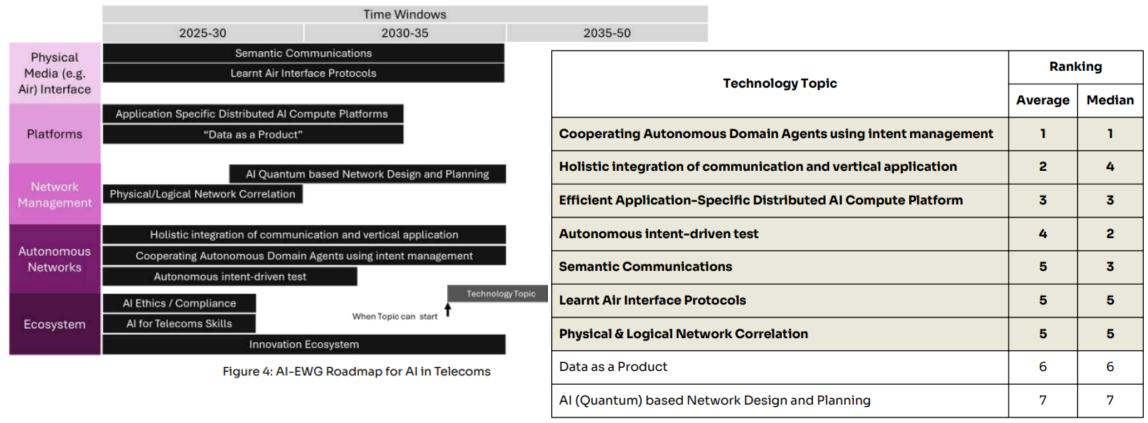
Roadmap

3. KEY OUTPUTS

TECHNOLOGY ROADMAP.

- Insights into the future of telecoms innovation in the UK
- Potential for investment in UK industry

• PRIORITIES.


- Sovereignty & Security of supply chain
- Focus on resilience of critical infrastructure
- Align with National Missions: Establish a National Institute
- Synthesise & Harmonise priorities across DSIT, UKRI & MOD

RECOMMENDATIONS.

- Build Capacity by supporting innovation through a portfolio of interventions. Apply a portfolio approach.
- Commit long term funding across government cycles.
- Incentivise Cross-Sector Collaboration
- Prioritise skills development and adoption
- Strengthen Regional cluster implementation

1) Insights from the AI Experts Working Group

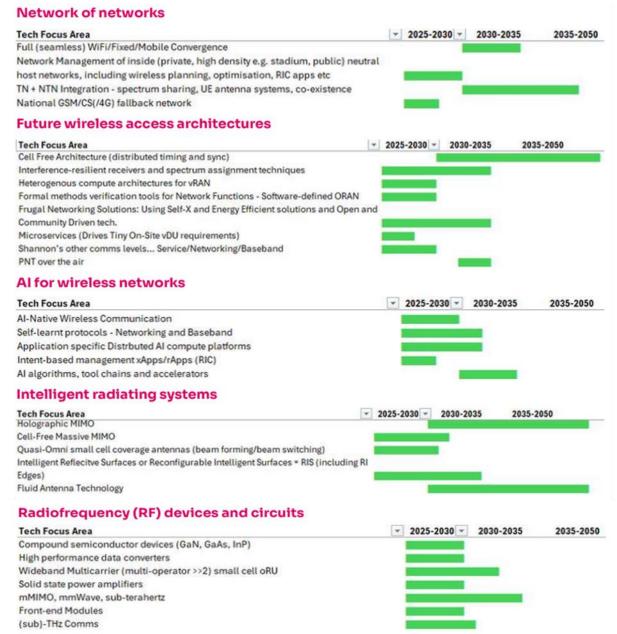
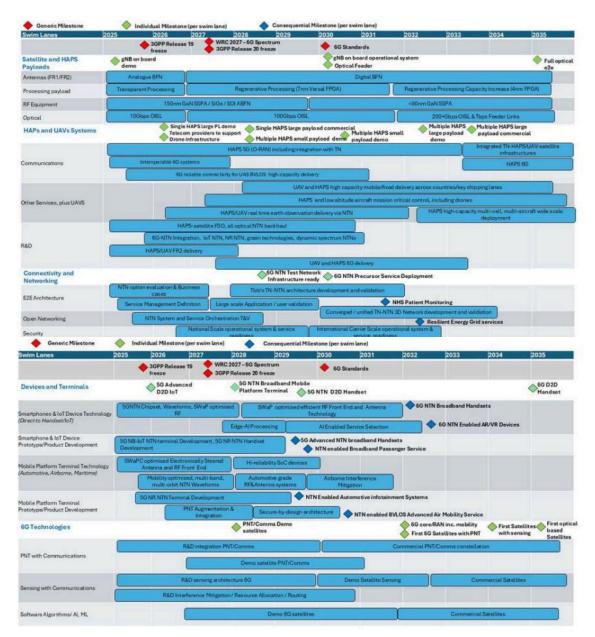

Key Requirements:

Table: 1 Ranking of the technology topics based on AI-EWG expert opinion (BOLD = selected for consideration)

- Telecoms-specific Al Ethics & Regulatory Compliance resources and specialist support
- Assessment and planning of long-term telco-specific Al skills requirements for the UK
- Access to funding for telecom-specific AI innovation by entrepreneurs and startups

2) Insights from the Wireless Experts Working Group

Highlighted Challenges:


- WiFi/ Fixed/ Mobile convergence
- Network Management, neutral hosting
- Wireless Planning (and Monitoring)
- TN+NTN integration
- Spectrum sharing
- UE Antenna systems
- Co-existence

Thematic Cross-cutting Requirements:

- Wireless security
- Resilience
- Sustainability

3) Insights from Non-Terrestrial Network Experts Working Group

High Level considerations

- HAPS and Satellites both have relevance
- Direct-Device generate opportunities for scale
- Services include from Comms, PNT & sensing
- Al integration and automation prevalent

Key Challenges:

- Disruption in business models
- Interoperability between TN & NTN systems
- Interference Mitigation Techniques
- Spectrum sharing policies

4) Insights from the Security Experts Working Group

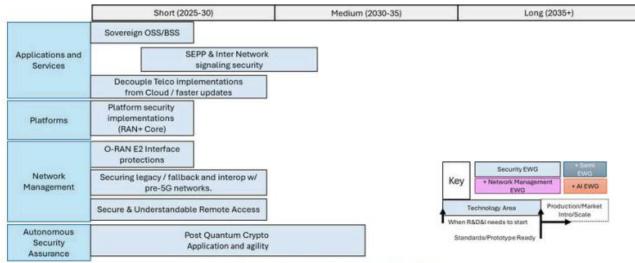


Figure 1: Security EWG Technology Roadmap

Top 5 Security related R&D topics:

- SEPP & Inter Network/ signalling security
- Platform security implementations
- RAN & Core Secure & Understandable remote access
- Securing legacy/ fallback and interop with pre-5G networks
- Decouple Telco implementations from Cloud / faster updates

Technology Roadmap Focus Areas	Topic	EWG Synergy					
		WN	Semi	NM	Stand	AI	
Applications and Services	Sovereign OSS / BSS		(√)	✓	✓	✓	
	SEPP & Inter Network / signalling security	√		√	✓	√	
	Decouple Telco implementations from Cloud / faster updates	✓		✓	✓	√	
Platforms	Platform security implementations (RAN + Core)		✓	√		✓	
Network Management	O-RAN E2 Interface protections			✓		✓	
	Securing legacy / fallback and interop w/ pre-5G networks			√			
	Secure & Understandable Remote Access			√	✓	✓	
Autonomous Security Assurance	Post Quantum Crypto Application & Agility		✓	✓	✓	√	

Table 1 Topic TRL score and synergies with other EWGs

Other considerations:

Quantum-safe cryptography

Security underpins all aspects of the systems

5) Insights from the Network Management Experts Working Group

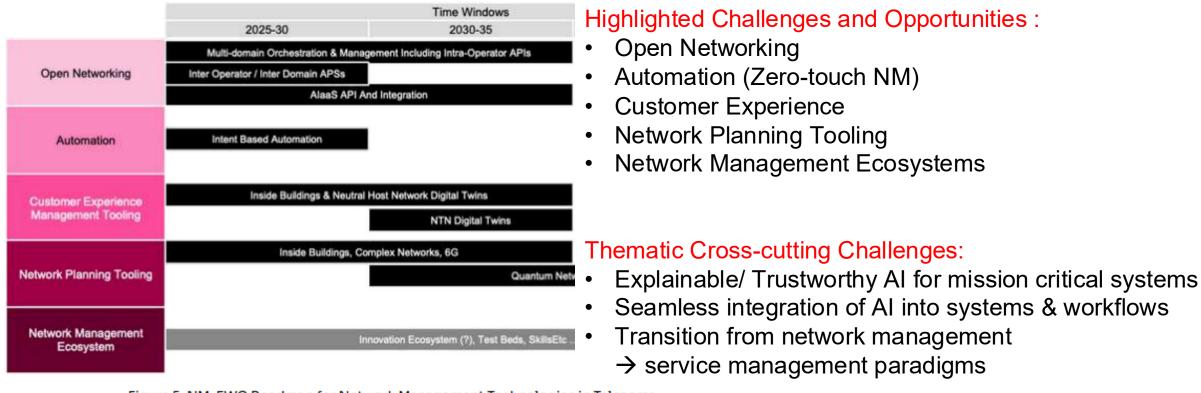


Figure 5: NM-EWG Roadmap for Network Management Technologies in Telecoms

6) Insights from the Core Network Tech Experts Working Group

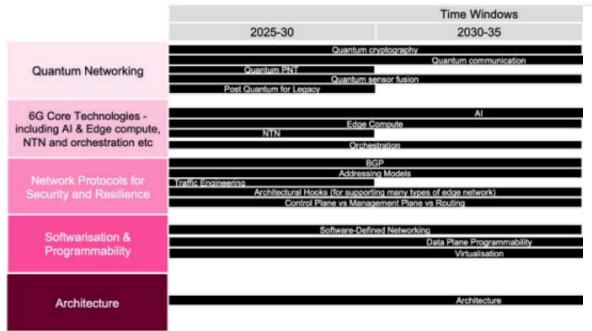


Figure 6: Core-EWG Roadmap for Core Networking Technologies in

Highlighted Challenges and Opportunities:

- Quantum Networking & QKD
- 6G Core Technologies, Integrated Al/Edge, NTN
- Network Protocols for Security & Resilience
- Softwarisation and Programmability
- Future Telecoms Architecture

Thematic Cross-cutting Challenges:

- Software defined networks and systems
- Complexity derived cyber-vulnerabilities

7) Insights from the Optical Comms Experts Working Group

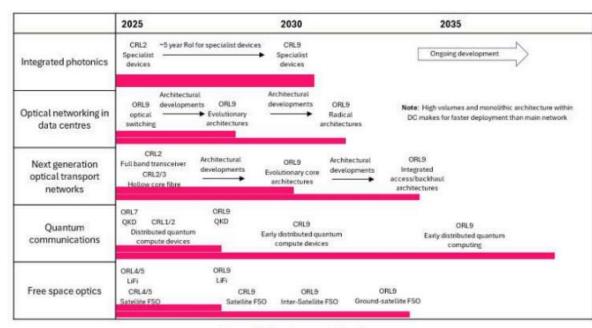
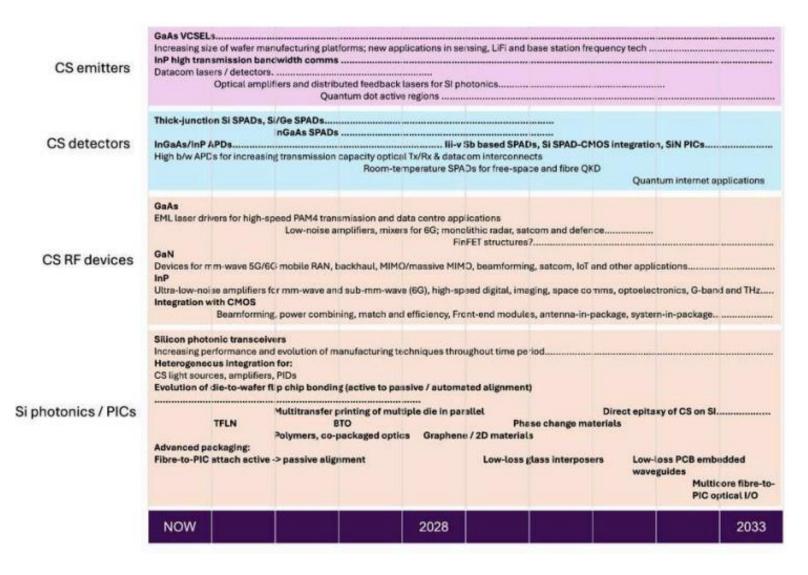


Figure 7: Development Timelines

Highlighted Challenges and Opportunities:

- Integrated Photonics
- Optical Networking in Data Centres
- Next Gen Optical Transport Networks
- Quantum Communications
- Free-Space Optics

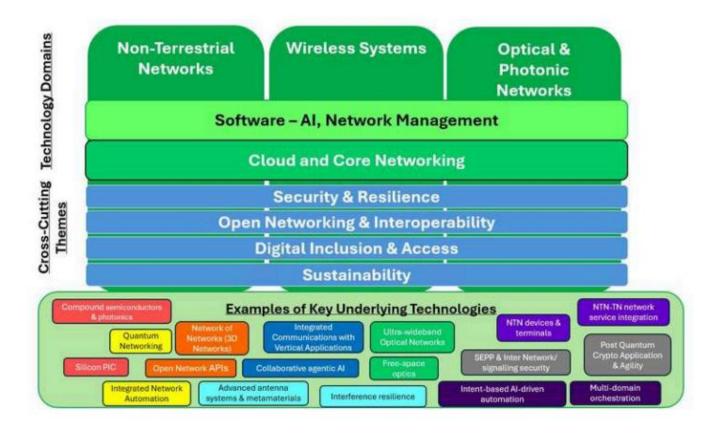
Cross-cutting considerations


- Supply chain resilience (eg Semiconductor & fibre)
- Security architectures

Spectrum and regulatory considerations

Free-space optics vs mmWave or sub-THz systems

8) Insights from the Semiconductors Experts Working Group



General Recommendations

- 1) Recognition
- 2) Coordination
- 3) Scale-Up
- 4) Resilience & Security
- 5) International Partnerships
- 6) Infrastructure Investments

- 9) Insights from the Standards Experts Working Group
- → Future Capabilities Leadership Forum

CROSS-GOVERNMENTAL GROUP

DISSEMINATION TO INDUSTRY

The Expert Working Groups (EWGs), Strategic Working Groups (SWGs) and Advisory Board (AB)

Strengths

Gaps

Overlaps

Roadmap

Spectrum Policy Forum Considerations

• Q&A / Discussion on Implications and Next Steps

Thank you

UK SPF Plenary: Update on the ITU-R WP 5D (IMT technologies)

Jussi Kahtava, SRUK 24/07/2025

Contents

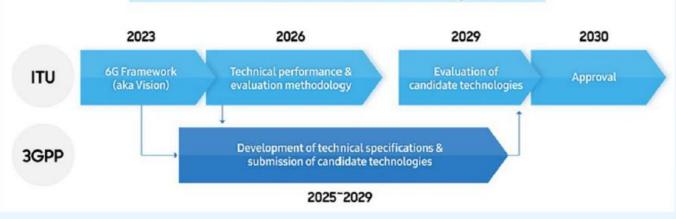
ITU-R WP 5D update

What else is going on?

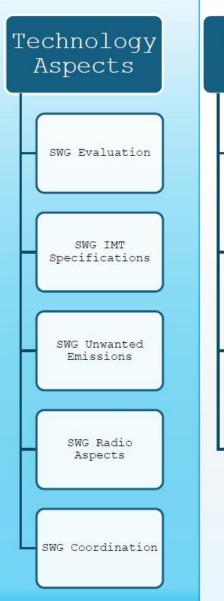
ITU-R WP 5D structure

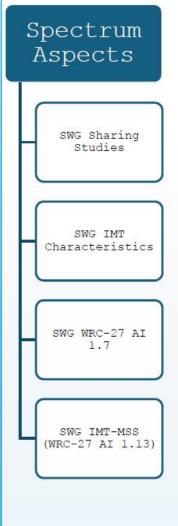
The IMT-2030 track

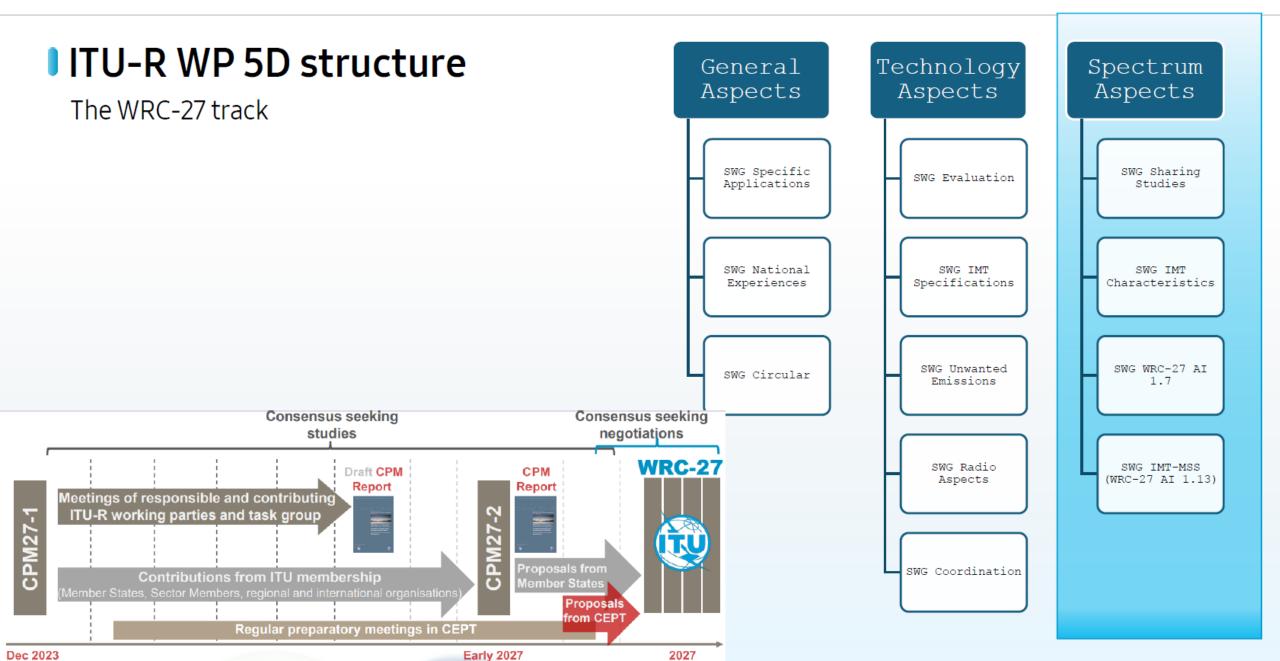
Now the fourth round!


IMT-2000 (WCDMA/HSPA + others)

IMT-Advanced (LTE-A, IEEE 802.16m)


IMT-2020 (NR, DECT-NR+)


IMT-2030 (3GPP Rel-20/21)


How 6G Standardization Progresses

General Aspects SWG Specific Applications SWG National Experiences SWG Circular

1. IMT-2030 progress

Technical Performance Requirements

- Current list of minimum technical performance requirements (TPRs)
 18 items
 - Peak data rate, 5th percentile user data rate (User experienced data rate)*, Peak spectral efficiency, Average spectral efficiency, 5th percentile user spectral efficiency, Area traffic capacity, Connection density, User plane latency, Control plane latency, Mobility, Mobility interruption time, Reliability, Bandwidth, Positioning, Energy efficiency for sustainability*, Sensing-related requirements*, AI-related capabilities, Resilience

Note*) Title of the items have been updated.

- Outcome of discussions on other candidate TPRs
 - Security: No TPR (To be included in description template)
 - Sustainability: No TPR (Energy efficiency is defined as a representative TPR for sustainability.)
 - [Coverage]: TBD (Concern expressed by sector members and administrations on this TPR.)
 - [Composite requirement]: TBD (Concern expressed by a sector member and administration on this TPR.)
 - [Interoperability]: TBD (Clarification and discussion on this TPR is needed at the next meeting.)

TPRs	High-level evaluation methodology	Usage scenarios / Test environments
Peak data rate	Analytical	IC
Peak spectral efficiency	Analytical	IC
5 th percentile user data rate	DL: Analytical	Dense Urban – IC
	UL: Simulation	[Rural – UC]
5th percentile spectral efficiency/		Indoor Hotspot – IC
	Simulation	Dense Urban – IC
Average spectral efficiency / Mobility		Rural – IC
		[Rural – UC]
Area traffic capacity	Analytical	Indoor Hotspot – IC
		[Dense Urban – IC]
User plane latency	Analytical	IC & HRLLC
Control plane latency	Analytical	IC & HRLLC
Connection density	Simulation	Urban Macro – MC
Reliability	Simulation	Urban Macro – HRLLC
Mobility interruption time	Analytical	IC & HRLLC
Bandwidth	Inspection	N/A
Energy efficiency for sustainability	Unloaded case: Analytical	Unloaded case: IC
	[Loaded case: Analytical or Simulation]	Loaded case: [Dense Urban - IC], [Rural - I
Positioning	Simulation	Indoor Factory - ISAC
		Urban[Macro] - ISAC
Sensing-related requirements	Simulation	Indoor Factory – ISAC
	[Analytical (only for Resolution)]	Urban[Macro] - ISAC
Al-related capabilities	Inspection	N/A
Resilience	Inspection	N/A
[Composite requirement]	[Simulation]	[Dense Urban – IC]
		[Indoor Factory – HRLLC]
[Coverage]	[Simulation]	[Rural-UC]
[Interoperability]	[Inspection]	N/A

IC – Immersive Communication, HRLLC –Hyper Reliable and Low Latency Communication,

MC – Massive Communication, UC – Ubiquitous Connectivity

AIC - Artificial Intelligence and Communication, ISAC - Integrated Sensing and Communication

Sharing studies on the IMT candidate bands

DG 4 GHz

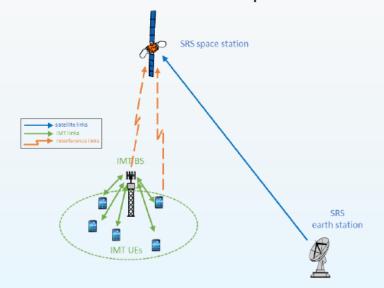
- FS, MS, FSS allocated on a primary basis
- AM(R)S, ARNS, FS, MS on adjacent channels on a primary basis
- 13 contributions

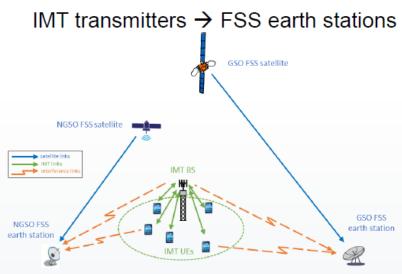
DG 7/8 GHz

- FS, MS, SRS, EESS, MetSat, FSS, MMSS, MSS, SOS allocated on a primary basis
- FS, MS, SRS on adjacent channels on a primary basis
- 52 contributions

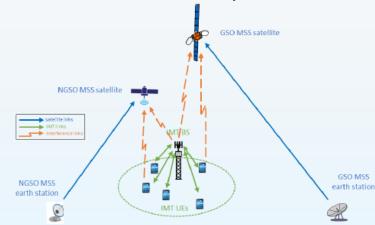
DG 14/15 GHz

- FS, MS, SRS allocated on a primary basis
- FS, MS, FSS, EESS (passive), RAS, SRS (passive) on adjacent bands on a primary basis
- 6 contributions


Documents related to studies to assess potential interference from incumbent systems into IMT ("reverse studies") were also introduced.


Some potential interference scenarios

IMT transmitters → FS receivers



IMT transmitters → SRS space stations

IMT transmitters → MSS space stations

Other Als where IMT is the victim: IMT Characteristics, chapter 4

The working document is largely stabilized and the content agreed, except for text intended to address cases beyond the baseline characteristics for parameters such as UE antenna gain and body loss (including protection of wall-mounted CPEs)

One very thorny open item is section 7 on the protection criterion for IMT, which remains unresolved

- IMT protection criteria is has been -6dB during previous study periods
- One approach is to use I/N CDF as measure to evaluate exceedance probability, whilst keeping IMT protection criterion fixed without reference to time percentage
- Another approach is to have non-exceedance probability as a range of values. The non-exceedance probability of X% in the CDF of I/N indicates that X% of the simulation snapshots satisfies this I/N value
- Yet another approach is C/(N+I) and a throughput criterion

[Editor's Note for Section 7:

The whole Section 7 is inside [...] and not agreed as a whole yet. However, in SWG, texts highlighted in GREEN were agreed, texts in YELLOW are not agreed and need more consultations and text in CYAN have not been reviewed.]

Table 25 contains the I/N value for assessing the protection of IMT (irrespective of the number of interferers) in sharing and compatibility studies [+footnote]

TABLE 25 L/N value for protection of IMT IN -6 dB

For the Monte-Carlo simulation analysis:

Results of Monte-Carlo studies can be assessed by analysing the CDF of I/N, which could vary depending on the scenario being studied.

For the assessment of the protection of IMT, non-exceedance probability values for I/N in Table 25 can be set at 98% for IMT user equipment and 99.5% for IMT base stations. In some particularly specific cases, higher non-exceedance probability values could be used (e.g., up to 99.99 or 100%).

To enable comparison across studies, the non-exceedance probability used in the assessmen should be presented alongside the results of studies. [It is to be noted that complementary approach is to examine C/(I+N) statistics and/or throughput loss metrics.]

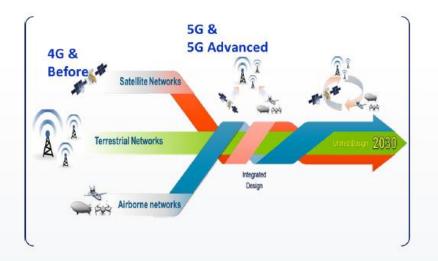
For the MCL analysis:

The evaluation of the IMT protection can be performed using the value in Table 25. To enable comparison across studies, the time percentage value set in the propagation model should be presented alongside the results of studies.

1. WRC-27 Agenda Item(s) progress

Other Als where IMT is the victim: IMT Characteristics, chapter 4

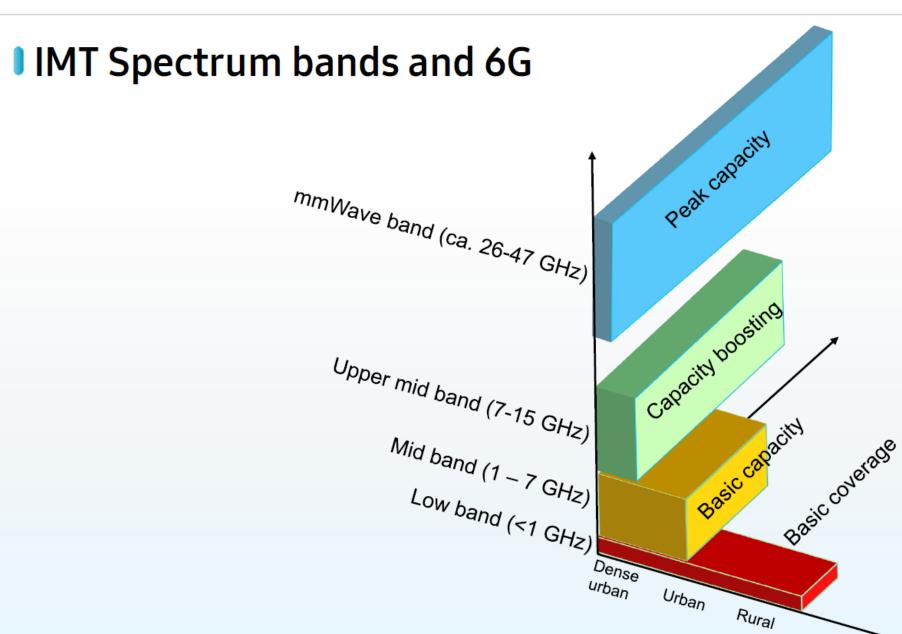
Some MNOs and four southern African countries raised the topic of CPEs used in IMT-based Fixed Wireless Access.


Question on whether the same body loss and antenna gains should be considered for CPEs as IMT UEs, since it can be argued that deployment is different for IMT CPE devices.

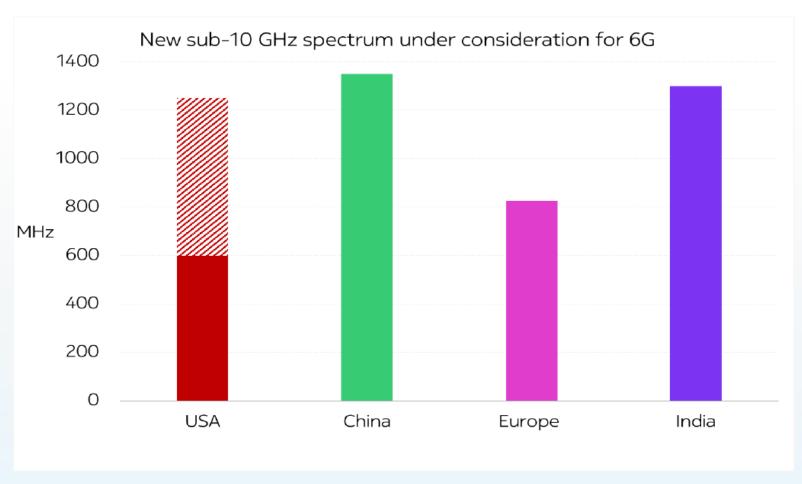
Typically CPE devices are wall mounted/vehicle mounted and therefore body loss is not applicable

Current un-agreed text in the working document:

[Beyond the baseline characteristics provided in the referenced material, [sensitivity] studies may be performed with clear justification for different values used (e.g. Tx Power, antenna pattern, antenna gain (0 - 5 dBi), body loss (0 dB) and noise figure).]


Integration of TN and NTN in 6G?

But...


IMT-2030 terrestrial and satellite components are under the purview of totally separate Study Groups. Terrestrial component is addressed by WP 5D whereas nonterrestrial component is addressed by WP 4B.

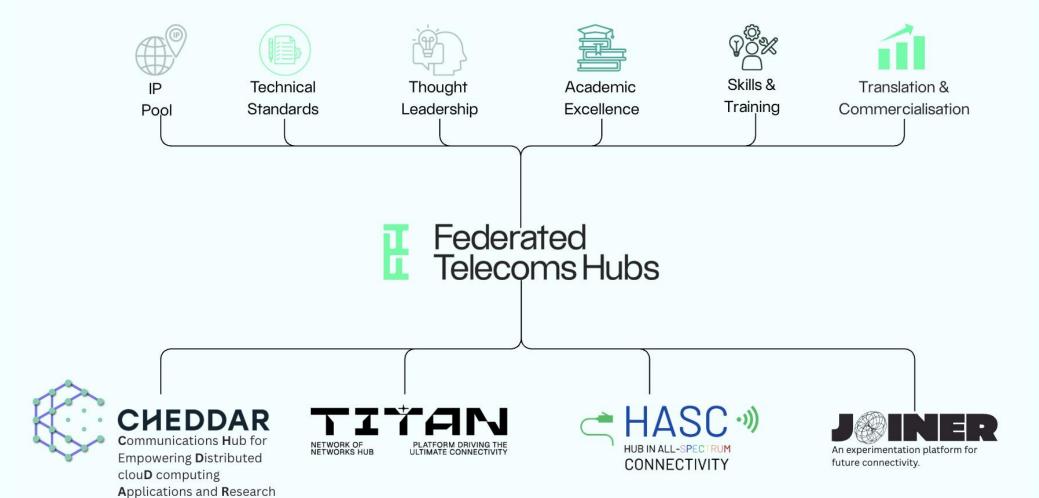
The TPRs at WP 5D do not address TN-NTN integration. The TPR for interoperability relates to completely different aspects.

2. 6G spectrum

• Europe is falling behind in 6G assignments?

Source: Global Mobile Suppliers Association

Samsung Research Thank you



Federated Telecoms Hubs

JOINER National Spectrum Facility

One of Europe's Largest Research Consortia

- 27 leading UK universities
- 100+ researchers focused on advanced communications
 - technologies
- £12M+ awarded in 2025 for research in advanced
 - communications technologies across the research hubs

The FTH Directors & Leadership Team

Led by
Prof Harald Haas,
University of Cambridge

Focusing on emerging seamless, intelligent and resilient Network of Networks (NoN) solutions and technologies

Led by
Prof Julie McCann,
Imperial College London

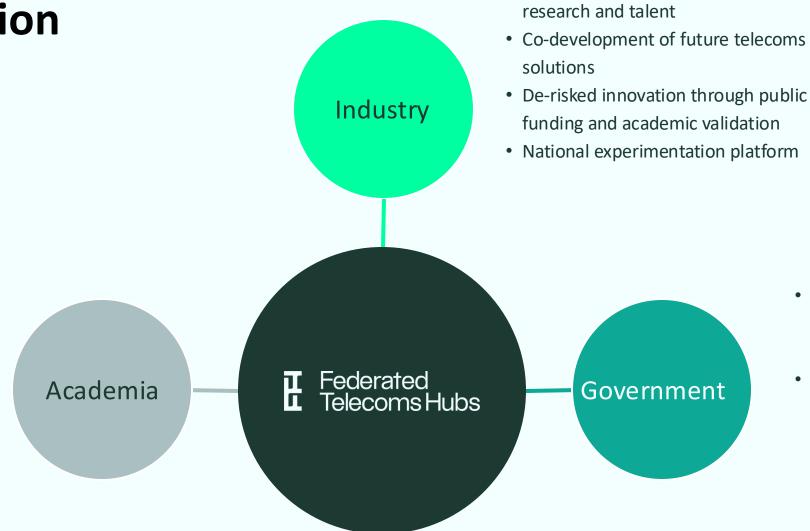
Researching 6G technologies that support edge-fog-cloud continuum of computation.

Led by
Professor Dominic O'Brien,
University of Oxford

HUB IN ALL-SPECTRUM

CONNECTIVITY

Focusing on how to combine wired and wireless internet technologies to achieve end-to-end connectivity


An experimentation platform for future connectivity.

Led by
Prof Dimitra Simeonidou,
University of Bristol

A national experimentation platform to accelerate 6G and future network research

Collaboration

- National platform to apply and test research at scale
- Industry and policy relevance for impact case studies
- Access to commercial and policy partners for knowledge exchange

Accelerated access to cutting-edge

Evidence-based policy

national R&D goals

through public-

collaboration

private-academic

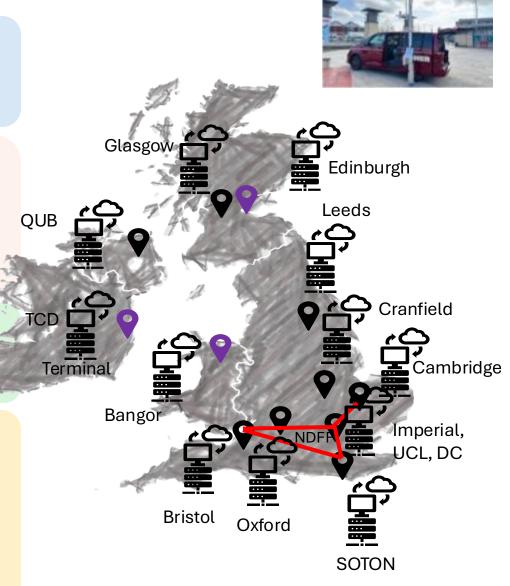
experts

Enablement of

insights from technical

About JOINER National Spectrum Facility

JOINER is a national-scale experimentation platform aiming to support future networks research, collaboration and experimentation at scale

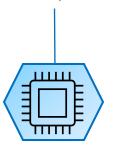

It is delivering an open, programmable and feature rich infrastructure at scale interconnecting 14 labs (including SONIC Labs) + a nomadic terminal, offering connectivity, cloud, RIC & mobile packet cores, monitoring, management, orchestration, spectrum measurement, ORAN, NTN emulation platforms

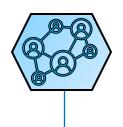
It is already developing capability to support the wider telco ecosystem including international (US/FABRIC, EU/SNS, Ireland, etc.), industry, SMEs and regions.

Key attributes include:

Large scale host for Future Network Experimentation:

- Collaborative by design
- Heterogeneous platform
- Led by world-class research labs
- Enabler of system-level research addressing end-to-end challenges





Key Areas of Technical Development

Onboarding New Hardware

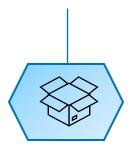
Radio, OWC, HW programmable platforms, ultrafast switches, new fibres, etc.

Infrastructure Evolution

Convergence (wireless, optical, satellite, computing, sensing),
Distributed & disaggregated

Native Security

Cyber
Physical layer & Quantum
QKD security as a service for
6G, integration of QKD and
post-quantum cryptography

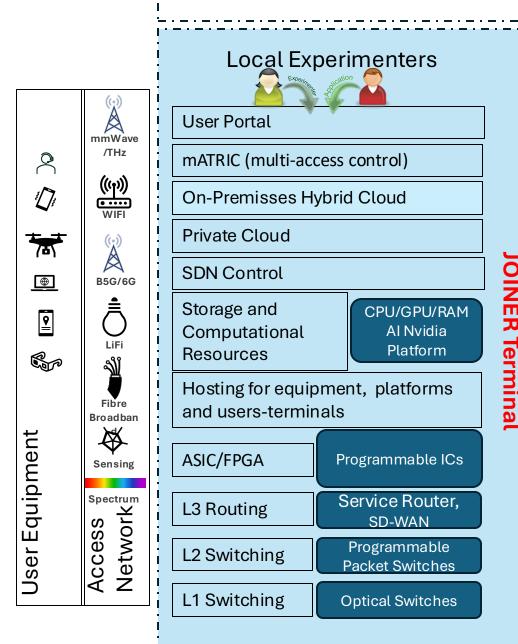

AlaaS

For network and Al applications

Open software/platforms/interfaces

Higher reliance on open infrastructure, platforms and interfaces

Cloud & Edgification


Continued cloudification
Federated and Split Edge computing

Spectrum

RF, THz and optical (infrared and visible light)

! JOINER Brain: Measurement & Analytics, Orchestration & Management, User Management, Policies

VI Monitoring and Data Collection Platform				
Virtual Infrastructure Management Platform				
Virtual Infrastructure				
Al models	Open-Source Platforms	RICs		
Monitoring Data	Storage	Spectrum		
Serverless Compute	Mobile Packet Core	Data		

Infra Monitoring and Data Collection Platform

Infrastructure Management Platform

L 2/3 Hybrid Cloud Connectivity [e.g., AWS VPN/Private Link]

Satellite links (GEO, LEO) at specific locations, e.g., Cranfield

10-40Gbps Layer2 Transport Network Connectivity at all 14 locations [JISC, Heanet for Ireland]

Layer 1 Optical Connectivity [existing NDFF infrastructure across Bristol, Cambridge, Southampton, UCL]

Hybrid Clouc

OINER Fat

Physical Infrastructure

The big picture – future spectrum management needs research and innovation

DSIT's Spectrum Statement 2023 calls for:

Ofcom's Spectrum Management Strategy 2014 identifies areas which need research:

Ofcom's new Growth Duty (2024) needs both spectrum for innovation but <u>also</u> innovation for spectrum management

UK <u>Digital and Technologies Sector</u> <u>Plan</u> (2025):

A renewed focus on innovation in wireless technology, enhanced sharing of spectrum bands, continuing to expand the frontiers of usable spectrum, advanced spectrum management techniques, improved interference management, monitoring and resilience will enable us to significantly improve spectrum availability, ensuring that spectrum access is not a limiting factor on the UK's economic and societal potential.

Table 1 - Ofcom's Spectrum Management Strategy illustrated on a page

Key spectrum duty To secure optimal use of spectrum in the UK i.e. the use that delivers the greatest value to UK citizens and consumers As there is no unused spectrum across many Requirements for wireless service are likely to The context for frequencies, the growth in competing spectrum increase for many spectrum uses. This will lead future spectrum there will still be increased pressures on demands will need to be addressed by a mix of to growing competing demands for key spectrum, especially in concentrated spectrum re-purposing to higher value uses spectrum resources geographical locations and greater use of spectrum sharing We will continue to combine the use of market mechanisms possible and effective and regulatory action where necessary. When we do take action we seek to retain flexibility in order to create options, rather than dictate solutions We will place a growing emphasis on four aspects of how we manage spectrum: Exploring new forms of spectrum sharing and extending sharing across new bands Our strategy Maintaining our increased focus on understanding the coexistence challenges associated with changes in spectrum use Promoting Improvements in radio performance standards to reduce future coexistence issues · Increasing the quantity and quality of information on spectrum use we make available We will also continue to play a leading role in international spectrum debates where this is most relevant to good outcomes in the UK

"Ensuring spectrum availability to support ACT by working with international counterparts ahead of the World Radio Conference 2027 and collaborating with Ofcom to promote efficient, innovative spectrum allocation and regulation, which continues to support the development and deployment of ACT."

Spectrum research questions and needs

Spectrum research questions

How to support **continued growth** in spectrum usage:

- Growth in data consumption
- Wider diversity of uses: Public, private, NTN
- Increased societal reliance on critical national infrastructure

 security and resilience needs
- New and higher spectrum bands

Enable denser spectrum sharing between adjacent networks and heterogeneous services, including sharing by frequency, time, location and power

How to ensure spectrum usage more closely reflects actual usage, ensuring efficient assignment while delivering the necessary protections against harmful interference and investment certainty

To address these questions researchers

Real-world spectrum interactions

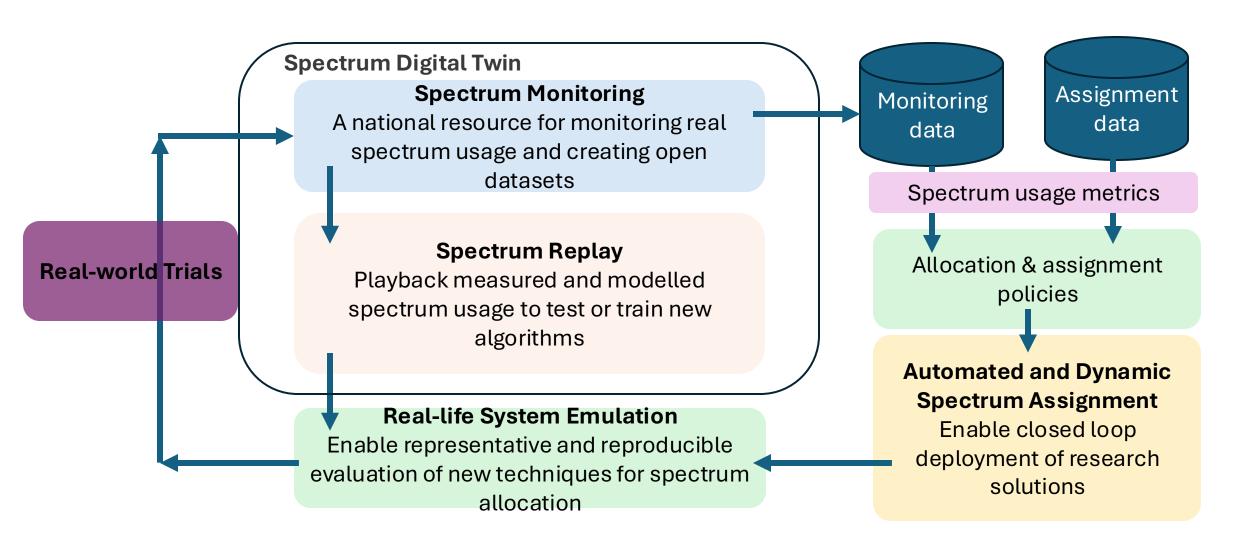
Open data on the characteristics of spectrum usage

Operation at scale for credibility:

- Geographical
- Temporal
- Computing (inc. Al) infrastructure
- Connectivity
- Traffic

To emulate and test advanced system concepts in realistic – and preferably real - environments

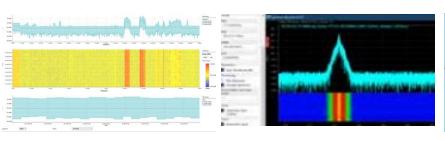
We are seeking to galvanise and support the UK research and innovation community to better meet these needs via JOINER and the Future Telecoms Hubs


JOINER-National Spectrum Facility (JOINER-NSF) is a facility hosted by JOINER to meet the needs of spectrum access innovation researchers and developers.

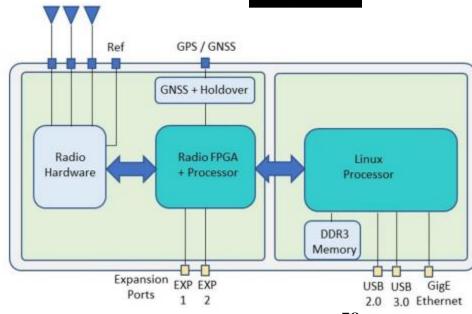
Spectrum access innovation here includes specifically:

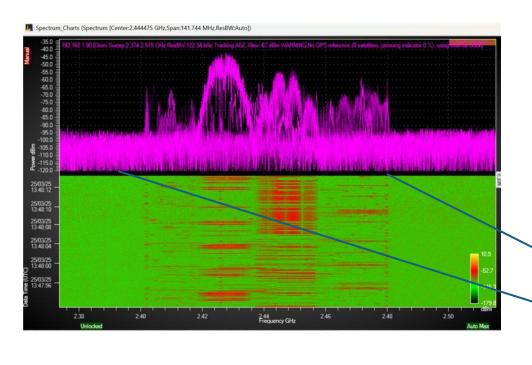
- Spectrum management solutions to enable more efficient use of the radio spectrum and deliver spectrum abundance for diverse future radio spectrum users, ensuring that spectrum access is not a limiting factor on the UK's economic and societal potential
- Approaches to spectrum sharing amongst heterogeneous spectrum-using services
- Multidisciplinary spectrum innovation spanning engineering, economics, policy and regulation
- Increased interference resilience for spectrum-using services, particularly from dissimilar services.
- Automated techniques for monitoring, managing and assigning spectrum for challenging spectrum scenarios
- Providing low-friction access to spectrum for UK researchers across all research domains (not limited to spectrum-related research)

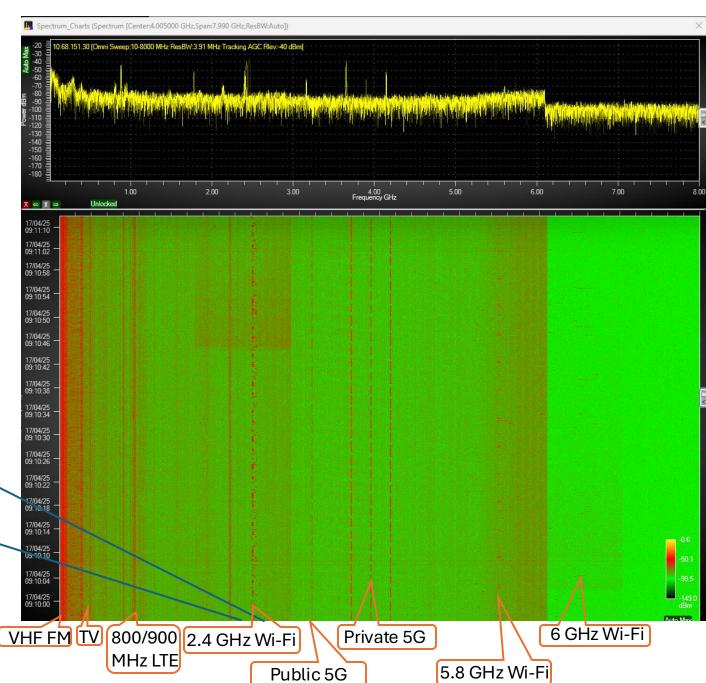
While there is a large body of research and other facilities and testbeds aimed at spectrum efficient solutions for individual systems, JOINER-NSF focuses particularly on what might be called 'spectrum science', i.e. the overarching role of radio spectrum management to better allocate and assign spectrum amongst diverse services.


JOINER NSF Functions

Monitoring Solution – by CRFS

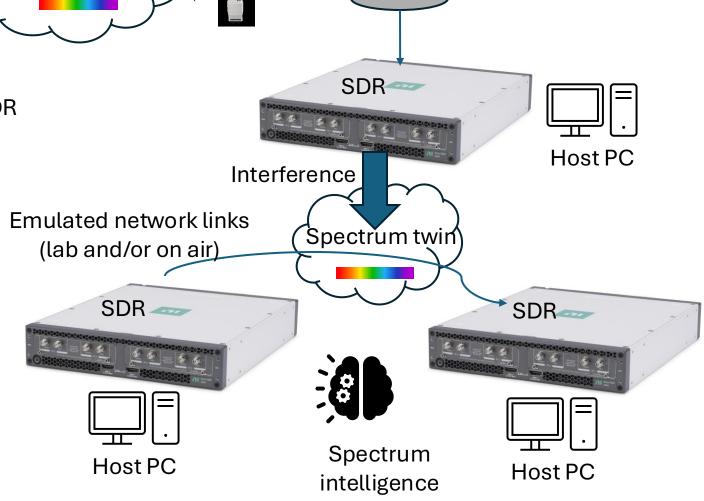

- RFeye 100-8 Node Plus
 - 10 MHz to 8 GHz frequency range
 - 100 MHz RF bandwidth
 - Sweep rate 27 378 GHz per second (for RBW 3.8 kHz 15.6 MHz)
 - IQ data and spectrum occupancy data
 - Local storage of 4 TBytes SSD on the Node Plus can store 100MHz IQ data for up to 2 hours
- Rfeye Site Real time Spectrum and Geolocation Software
- Rfeye Deepview Forensic signal analysis
- Rfeye Mission Manager at NOC
 - Job schedule management
 - Intuitive visualization
 - Automated reporting
 - Automated geolocation





Antennas 1-3

Example spectrum capture



Spectrum Playback and System Emulation

Real spectrum activity Monitoring data

Emulation and replay hardware

- Emerson (National Instruments) X410 USRP SDR
- Frequency range is 1 MHz 8.0 GHz
- Simultaneous 4 channels TX and 4 channels RX
- Instantaneous 400MHz bandwidth
- FPGA support

Example spectrum research topics enabled by JOINER NSF

Interference Resilience

- Interference and noise resilient receivers, waveforms and protocols
- Coexistence Mechanisms for Heterogeneous Networks

Interference Management and Mitigation

- Anomaly Detection
- Predictive Interference Avoidance

Sharing techniques

- Spectrum Monitoring and Compliance
- Harmonised Spectrum Sharing Frameworks

Radio wave propagation prediction and channel modelling for spectrum management

- New bands
- New coexistence scenarios
- Higher precision and automation
- Enhancing models via ML and measured data

Automated and Dynamic Spectrum Allocation and Optimisation

- Acting on network and usage data without comprising security
- Flexible spectrum assignment while maintaining incentives to invest
- Open standard interfaces

Regulatory and Policy Research

- Incentivising Efficient Spectrum Use
- Working within international spectrum allocation policies while not being limited by them
- Frameworks for Al Regulation in Spectrum Management

Non-exhaustive examples only: additional topics welcome

UK SPF Steering Board update

Dr Abhaya Sumanasena, Real Wireless & UK SPF Chair

UK SPF Steering Board update

- Update on research projects

- Commissioning study on Sharing between satellites and terrestrial systems in the future
- Suggestions for possible research projects
- Currently on file:
 - 1. Sharing between satellites and terrestrial systems in the future
 - 2. International developments in spectrum for 6G
 - 3. The rise of satellite systems non-geostationary orbit (NGSO) and Co-channel operations in MSS bands
 - 4. Lunar communications

- Become a UK SPF Member

- New large members joining the Steering Board will be able to take advantage of the one-off reduced member's fee of £7,500 p.a.
- The annual membership fee for SMEs is £3,000 p.a.

Update from Cluster 1

Manuel Rascado-Marti, UK SPF Cluster 1 and LS telcom

UK SPF Cluster 1 update

Past workshops:

Demand for indoor connectivity (May 25)

Upcoming events:

- Future demand for Public Sector spectrum (Sep/Oct 2025)
- Demand for shared spectrum (Nov/Dec 2025)
- Utilities and spectrum demand (TBC)
- Other?

Update from Cluster 2

Bob Stewart, UK SPF Cluster 2 & University of Strathclyde

Update from Cluster 3

Tony Lavender, UK SPF Cluster 3 and Plum Consulting

SPF Plenary Cluster 3 update July 2025

- Cluster 3 Spectrum value and efficiency
 - Contribution of spectrum to economic and social welfare.
 - Efficient use of spectrum (including sharing approaches).
 - Cluster 3 also hosts the Shared Access Licensing (SAL) Forum.
- Recent events
 - 3rd June 2025 Workshop on spectrum sharing combined event comprising:
 - SAL Forum on experience with Ofcom changes announced last December
 - Follow up session on Spectrum Sandboxes looking at results and outcomes
- Cluster 3 activity for 2025/26:
 - Continue with work on aspects of spectrum sharing (including SAL).
 - Workshop on economics of spectrum and impact on the UK.
 - Collaborate with other clusters on modernisation of spectrum management.
 - Policy and regulatory approach for spectrum for utilities and public safety.
 - Dates for above activities to be set.

Update from Cluster 4

Kumar Singarajah, UK SPF Cluster 4 and Euroma

Cluster 4 Update (July 24, 2025)

Kumar Singarajah

ITU-R, CEPT / EU and other RTO activities 'picking up speed in 2025 for ITU-WRC-2027. Industry interest / engagement increasing as result!

Envisaged scope of Cluster 4 workshops in 2025 / 2026 / 2027 as below.

- I. A June 9, 2025 am workshop event on WRC-2027 space / satellite related agenda items above 3 GHz (viz Al 1.2 and Al 1.1).
- II. A September 26, 2025 workshop on WRC-2027 EESS topics under AI 1.19 and AI 1.18.
- III. A November 2025 workshop on WRC-2027 AI 1.17 space weather topics.
- IV. [A December 2025 workshop with 2-3 non European NRA or RTO representatives to provide perspectives on key topics for ITU WRC- 2027.
- V. A Q1 2026 workshop on WRC-2027 AI 1.15 on cislunar / lunar exploration items.
- VI. A Q2 2026 workshop on WRC-2027 AI 1.7 (IMT-2030 etc and 5G/6G including NTN).
- VII. Two further Workshops in H2 2026 with focus on some WRC-2027 topics.
- VIII. In 2027, at least 3 Workshops on high priority ITU WRC-2027 topics prior to WRC_2027 and 4th Workshop after WRC-2027.

SPF members encouraged to offer presentations re II / III / IV / V / VI / VII above.

AOB & Close

Dr Abhaya Sumanasena, Real Wireless & UK SPF Chair