6G Technology Enablers Workshop: Spectral and Energy Efficient Radio Systems

Professor John Thompson FIEEE¹

¹ Institute for Digital Communications (IDCOM), School of Engineering, The University of Edinburgh, Edinburgh UK

Email: john.thompson@ed.ac.uk

Overview of Talk

- Energy Consumption in Wireless Networks
- Energy Issues in Wireless and working towards "net zero"
- Personal Research in Energy Efficient Transceiver Design
- Current Wireless Related Research directions in IDCOM
- Conclusions

Energy Efficiency in Wireless Networks

- Around 2010, several projects (Green Radio, EARTH, GreenTouch) studied wireless energy efficiency
- Some key findings:
 - > At the time, base station energy consumption was reducing around 8% per year
 - Not a simple single solution to achieve significant reductions
 - Need to study the energy consumption of the whole system
 - In cellular networks, data traffic is very non-uniform in time and in area, so we need flexible/adaptive solutions
 Traffic/site 1
- 5G can reduce energy over 4G as follows [1]:
 - Minimal base station signalling enables "deep sleep"
 - Massive MIMO Base Stations improve link efficiency
 - Small cells can provide high capacity where needed

Energy Consumption in Wireless Networks

"Plausible" Model for CO₂ Emissions from Wireless Networks to 2020 (from c. 2010) [1]

So what actually happened from 2010-2020 for the ICT Sector [2]?

[1] A. Fehske et al, "The Global Footprint of Mobile Communications: The Ecological and Economic Perspective", IEEE Comms Mag, Aug 2011, pp55-62.

[2] J. Malmodin, "Energy Consumption and Carbon Emissions in the ICT Sector", Tech 4 UK conference on Decarbonising Data, 2020

So What Will Happen in 2020-30?

- In the short term may be an increase in energy consumption as 5G networks rolled out alongside existing 2G/3G/4G systems
- However as 5G networks mature and older networks are removed energy consumption is likely to reduce _
- ITU targets a 45% reduction in CO₂ emissions in 2030 compared to 2015 to support the net zero carbon target in 2050
 - Need to adopt renewable energy sources
 - Further improvements in energy efficiency
 - Using ICT to drive efficiency in other industries

Carbon Emissions of Video Streaming

Energy Efficiency in mm-Wave Networks

- Millimetre wave bands provide higher capacity; use directional beamforming to mitigate channel effects
- First systems to launch operate around 24-28 GHz
- Research needed to develop higher frequency technologies when should we stop?

Hybrid Multiple Antenna System

Hybrid Architecture:

- Use small number of RF chains/transceivers
- Use analogue circuitry to connect to large number of antennas
- Use multiple beams for spatial multiplexing

- How do we design the individual components of the system?
- Consider how to optimise the No of RF chains (yellow) and sampling resolution (green) to improve energy efficiency

Calculating Energy Efficiency

- Communications system has transmit power levels P_{TX}
- Given the spectral efficiency R(P_{TX})
- And the TX/RX power consumed P(P_{TX})
- The Energy Efficiency is defined by:

$$\mathsf{EE} = \frac{R(\mathbf{P}_{TX})}{P(\mathbf{P}_{TX})} \quad \text{(bits/joule)}$$

Design algorithms to improve **EE** performance

This is a difficult quantity to optimise as it is the ratio of two complicated functions!

Proposed Approach: Dinkelbach Method

- First idea: Use a Brute Force Approach to test all possible setups
- Second idea: We adopt the **Dinkelbach Method**:

$$\max_{\mathbf{P}^{(m)}\in\mathcal{D}^{L_{\mathrm{T}}\times L_{\mathrm{T}}}}\left\{R(\mathbf{P}^{(m)})-\nu^{(m)}P(\mathbf{P}^{(m)})\right\}$$

- Frequently used to optimize the ratio of two functions
- 2-3 iterations to find the best transmitter/receiver setup and choice of EE
- Method much simpler than brute force but yields good solutions

Power Consumption Modelling

- Interested in the total power P consumed by the transmit-receive system, not just transmit power P_{TX}
- Use a model that computes the power for all elements for TX/RX
- Linear scaling in power for No of RF chains used
- Sampling device power scales **exponentially** with No of bits used
- Summing these terms gives total power consumed $P(\mathbf{P}_{TX})$

Power Term	Value	Power	Power
Power required by all circuit components Power required by each RF chain Power required by each phase shifter Power per TX/RX antenna element Maximum allocated power	$P_{CP} = 10 \text{ W} P_{RF} = 100 \text{ mW} P_{PS} = 10 \text{ mW} P_{T} = P_{R} = 100 \text{ mW} P_{max} = 1 \text{ W} $	Linear Increase No of RE Chains	Exponential Increase Sampling Resolut

Energy and Spectral Efficiency Results

Observations: We have to trade Energy and Spectral Efficiency

Dinkelbach Method achieves similar EE to Brute Force method but lower SE than Digital

Where Do We Go From Here

- Significant advances in energy efficient radio technology in 4G and 5G wireless systems in last ten years
- Major Challenges ahead:
 - Efficient Operation over many frequency bands, particularly with the move to use mm-wave spectrum
 - Optimisation and Artificial Intelligence Techniques to build the "always most energy efficient" networks
 - Improving wireless equipment recycling and the circular economy

Wider Network Integration using Radio/Light

Goal: Connecting underwater/space to high speed wireless networks **Colleagues:** Wasiu Popoola, Majid Safari

- The Underwater network is the final frontier in high speed wireless connectivity
 - Major benefits e.g.: environmental protection, socio-economic and national security.
 - Currently relies on the low frequency acoustic waves limited to low data rates.
 - Underwater channel is extremely hostile to radio waves
- The **Drone and Satellite networks** can also support communication, especially in remote areas
 - Need to identify the best way to integrate these systems with cellular networks
 - Light communications can complement radio technologies to provide high bandwidth directed communication

Full Duplex Communications

Goal: Effective Communication when data is both simultaneously transmitted and received

at the same frequency, ideally using a single antenna element.

Colleagues: Symon Podilchak, Tharm Ratnarajah

(+) Potential Advantages

- Bi-directional communications
- Doubling of the spectral density
- Suppresses end-to-end delays in wireless networks

(+) Current Research

- Combining Analogue and Antenna Cancellation Methods
- ✓ Dual Polarization Antennas with up to 50 dB of Cancellation
- Extension of Concept to Antenna Arrays

Machine Learning for Communications

Goal: Investigate performance gains of Machine Learning

- Colleague: Tughrul Arslan
- Why Machine Learning?

Transmitter

Multiple

Dense

Lavers

Normalization

Higher performance over complex or unmodeled channels

Channel

Noise

Gain

- Automatic compensation of hardware impairments or other unaccounted non-linearities
- Increased performance due to the removal of functional block boundaries of traditional algorithms

Multiple

Dense

Layers

Receiver

Ŝ

Softmax

Example: Embedded AI/ML for beamforming with a spinout company

Thanks for your attention!

Questions?