

Delivering Future Rail Connectivity Alfonso Álvarez

Deputy MD, Cellnex UK alfonso.alvarez@cellnextelecom.com

29th March 2022

From Network Coverage >> Network Quality

Coverage is nothing if you can't do anything practical with it.....

///

From Network Coverage to Network Quality

Concurrency is key to determining train capacity requirements

Service / App	2025e	Concurrency	2025e
Watching	12%	100%	12%
Listening	9%	50%	5%
Communicating	52%	5%	3%
Video Calls	2%	100%	2%
Gaming	3%	100%	3%
Reading/Browsing	22%	5%	1%
Total			25%
x People using phone			65%
= Concurrency			16%

- 1,350 devices per train (i.e. 900 people x 1.5 devices)
- 16% of concurrent access to MNO signals
- Include attenuation of train windows and frames
- = throughput requirement of 100 and 120 Mbps per MNO
- = mean signal strength of at least -105 dBm inside

Contiguous Coverage vs. Contiguous Performance

Infill approach results in a highly variable user experience

International Context

The UK has no rail specific connectivity targets/obligations via licences

- 100% population by 2027
- 99.6% territory by 2027
- 23,000 km railways by 2027
- 55,000 km roads by 2030

→ MNO funded, automatic 4G licence renewal if achieved

- 98% premises by 2022
- 100% toll roads by 2022
- 100% federal roads by 2024
- 100% railways by 2024
- 100 Mbps roads, 50 Mbps rail
- → Licence obligations from 2.1 GHz and 3.5 GHz auctions

Network Rail's Project Reach will seek to address this situation, but will need MNO buy in

 \mathbf{M}

- No population target
- 95% territory by 2026
- No railway targets
- 16,000 km roads by 2026

International Context

We also use railways in different ways to other European countries

c.55% journeys in England were for commuting

Clearer split in other countries between:

- Commuting (mainly local <15 miles)
- Long distance (i.e. >100 miles)

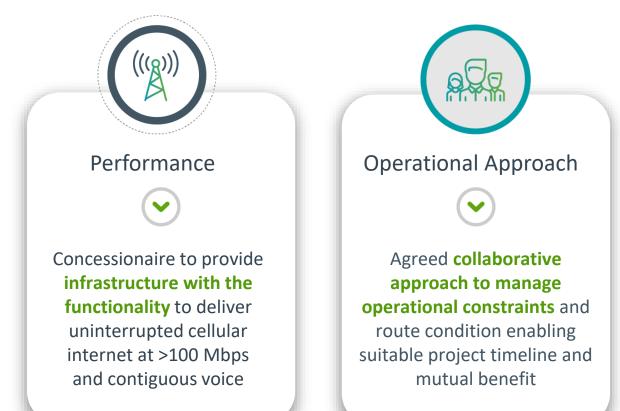
30 miles average trip length

- France c.2x
- Sweden c.2x
- Germany c.1.5x

Fewer true long distance (i.e. >150 mile) journeys

- France = c.220 miles
- Germany = c.180 miles
- HS2 first real example

Lower propensity to connect to 'onboard' solutions


- Shorter 'dwell' time on train
- Dominance of 'midlength' journeys
- Current performance also inhibits

This needs to be considered when determining 'the best' communication solution for passengers

3

A partnership model designed to optimise the outcome

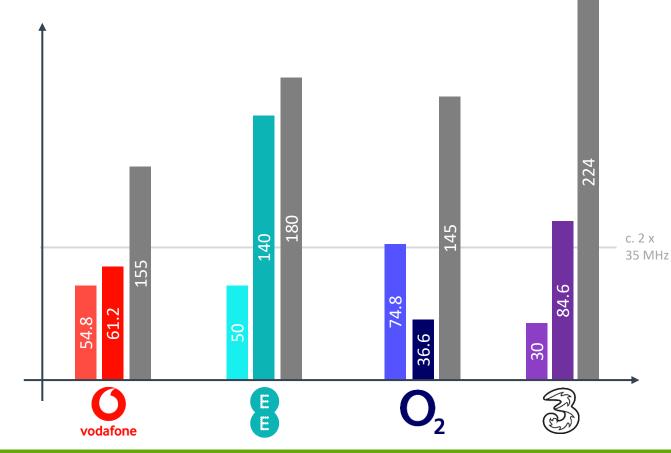
Solution Architecture

Agreement that some 'offrail' towers will be built as part of the solution to optimise RF planning and economics of solution

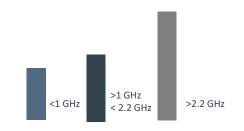
Existing coverage and performance on the line

800 MHz

- Previous measurements before lockdown based on Best Server coverage, primarily 800 MHz
- Measurements after lockdown in the other bands shows, as expected, additional gaps
- More towers added to the radio planning to meet coverage and capacity requirements
- Capacity at 800 MHz hard to achieve, multiband solution required.....see next slide
 - -120 -140dBm
 - -110 -120dBm
 - -105 -110dBm
 - -1 -105dBm



2100 MHz



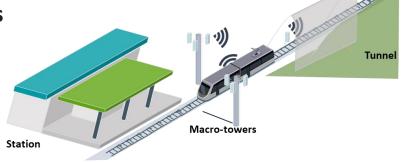
Achieving capacity requires sufficient MNO spectrum

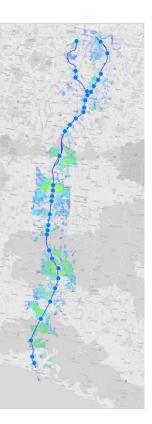
- c.2 x 35 MHz of spectrum required to achieve c.120 Mbps per MNO per train
- Holdings < 1 GHz generally insufficient
- Hence need to plan infrastructure to provider coverage in the 1.8 – 2.1 GHz range

Technical Solution comprised of three elements

Macro Towers

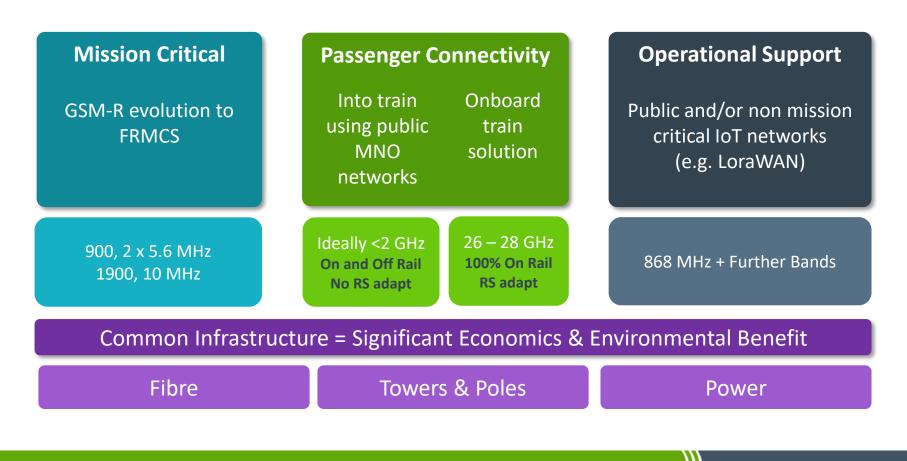
New towers will be constructed 'on-rail' and 'off-rail' hosting MNO equipment, new towers will be built to a height of up 25 meters and be '5G ready'


Fibre


High capacity dark fibre backbone of solution, provides connectivity opportunities to enterprise and businesses the length of the route

Distributed Antenna Systems

DAS equipment in stations, tunnels and cuttings, in conjunction with the macro sites, ensures end-to-end connectivity


driving telecom connectivity

Line-side communities and SMEs will benefit from 'incidental 'coverage and capacity improvements

Spectrum & Infrastructure Considerations

Mix of dedicated, MNO and shared, ideally leveraging common & existing infrastructure

