

Coverage Enhancement with Power Efficient Reconfigurable Intelligent Surfaces

Dr. Mohsen Khalily

Radio Access Network Techniques for 6G Workshop

Incoming wavs

Introduction

Control over the Propagation Environment

Network Operators' Challenges

Current Technologies

Reconfigurable Inteligent Surface

6GIC's RRSs

Static RRS

Dynamic RRS

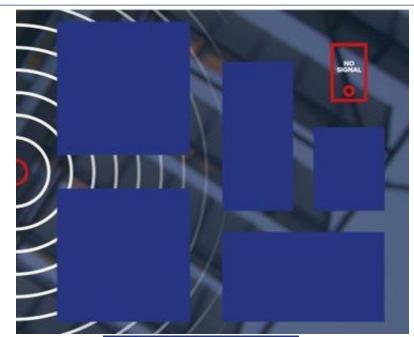
Multibeam and Widebeam RRS

RRS channel measurement

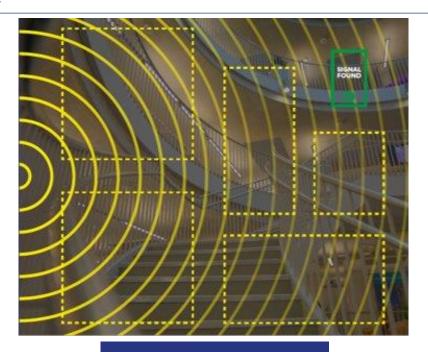
A reflector Specular reflection

Incoming ways

THz channel measurement


•Wireless communication engineers envision a fully connected world where there is a seamless wireless connectivity for Everyone and Everything.

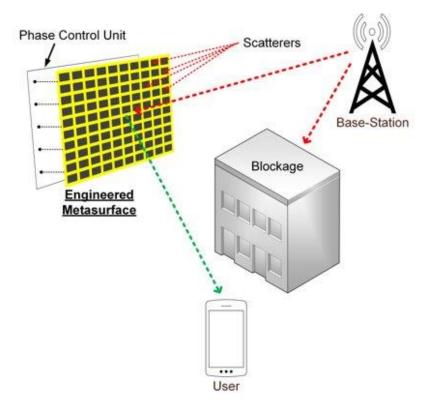
•Current 5G and future 6G wireless networks will be required to fulfil an ever-increasing demand for connectivity at an unprecedented scale.


•This will require all future generations of Smart, Intelligent and Efficient.

Control over the Propagation Environment

A lack of control over the propogation environment

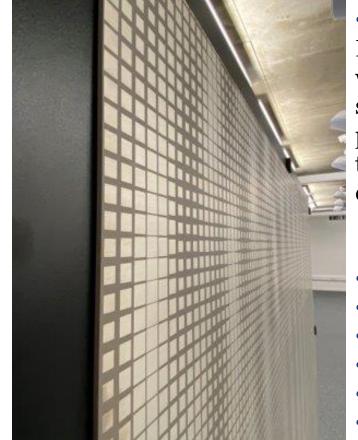
A controlled propogation environment


- Lack of seamless connectivity leading to poor quality of (QoS) especially in harsh propagation environments.
- Supporting billions of online devices with such high data which ultimately results in a higher carbon footprint of the network.
- Uneven user distribution due to various practical challenges in the urban environment leading to an unequal resource utilisation at the BSs.

- Large-scale antenna systems e.g, Massive MIMO systems
- Relay nodes, heightened power consumption and reduced network efficiency.
- Although, ultra-dense networks can be a solution for coverage enhancement, they can increase the interference level and require backhaul planning along with higher infrastructure management costs.
- Using co-operative BSs would also require higher density while switching to sub-6GHz. (For mmWave scnearios)

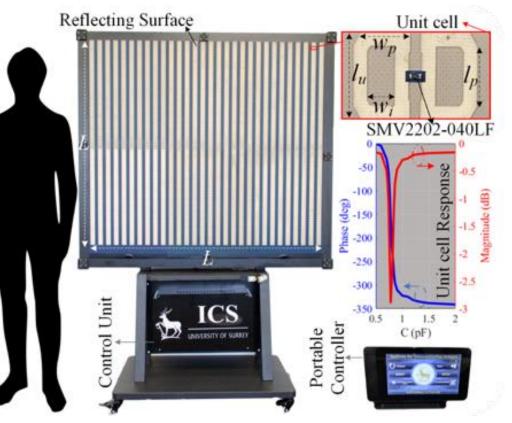
Reconfigurable Intelligent Surface

- RIS are typically composed of a large metasurface sheet backed by a control unit.
- Capable of flexible manipulation of an arbitrary EM wavefront.
- > RIS does not require intense backhaul planning.
- ➢ RIS can be made of smart elements that are not impaired by noise amplification.
- RIS capable of controlling the state of individual elements and can sense the environment to cut down power consumption.
- RIS can improve coverage by forming strong NLoS path where the LoS path is either blocked or not sufficiently strong.

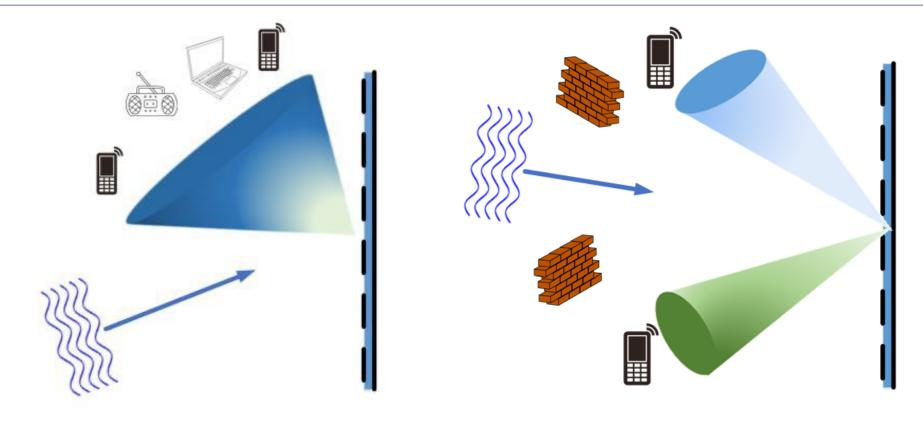

6GIC's RRS

Static RRS

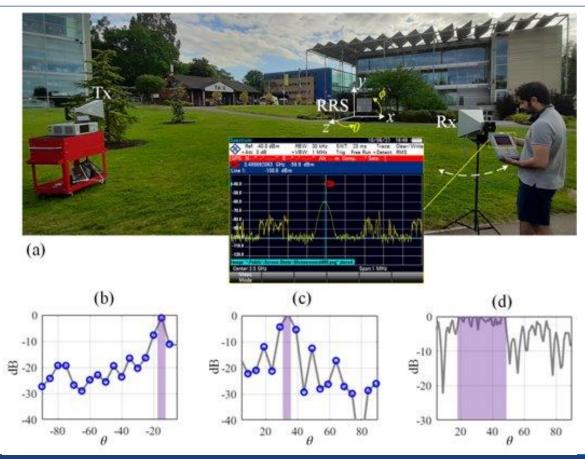
•Substrate: F4BT615 is a micro dispersed ceramic PTFE composite with a woven fiberglass reinforcement through scientific formulation and strict technology procedures. Besides , because of the high thermal conductivity , advantage to the heat dissipation of apparatus.

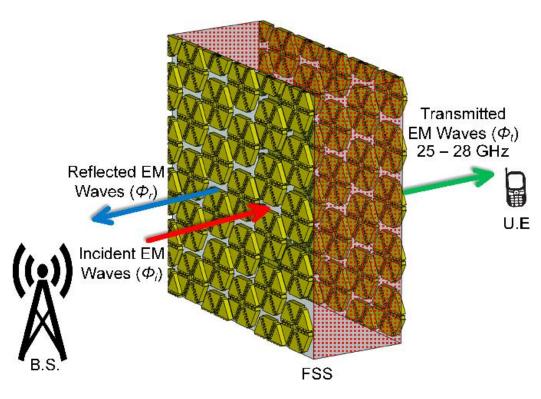

•Thickness: 3mm •Unit cells: 11000 •Beams: 2 reflected beams towards ±450 •Measured Gain: 20 dB •Bandwidth: 400MHz (3.3 GHz- 3.7GHz) •Input power: 0 Watt

Dynamic RRS

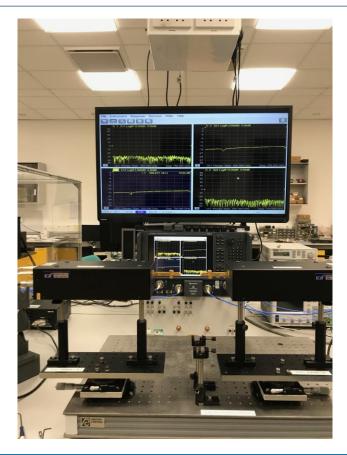

• The patches have been printed on an F4BT450, substrate with a thickness of 1.524mm

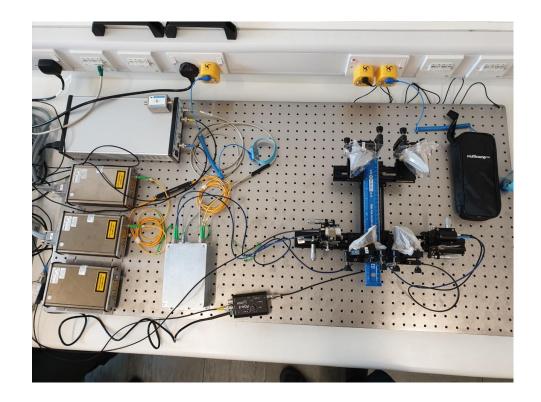
- Unit cells: 3000
- Measured Gain: 17dB
- Bandwidth: 700MHz (3.1- 3.8 GHz)


Muli- & Wide-Beam RRS


Muli- & Wide-Beam RRS

- Fully-transparent and novel transmission surface that can be used to reduce the penetration loss encountered by mmWave frequencies during a typical O2I scenario.
- It is optically transparent, so it can be deployed in buildings as windows or glass panes without impacting the aesthetics of the infrastructure.




	30.0 dBm	08/05/21 14:52 RBW: 30 kHz SWT: 20 ms Trace: Clear/ •VBW: 1 MHz Trig: Free Run • Detect: RMS					ar/Writ
Att: 0 GPS: N* MD Line 1:		-98.8 dBm	Alt m ((12)	omp.:		Same	and a
30.0			@				
-40.0	M2						
							
-60.0							
-70.0							
-80.0					_		
-90.0							at Daarda
	hu / Harring	Mill Barry	withinst	phillip at	telle meter	HW A/H	ALL A
-110.0					* 2 E - 2	4.11	an bili
Center:3.5 (GHz				an:2 MH	z	
Center Freg	CF Stepsize	Start Freq	Sto		Freq Offset	-	Freq Vlode

3.49999206 Line 1: -1	33 GHz -61	.2 dBm	ALC IN	Comp.:	oata		
40.0			0				
50.0 60.0			7				
70.0 80.0					A-00-0		1
o o her his and his	ala yakar	Minut	Jun	MANANA		mult	mal
110.0							and the second
Center:3.5 GHz				Si	pan:1 MH	z	

THz Channel Measurement

Thank you for Watching and Listening !