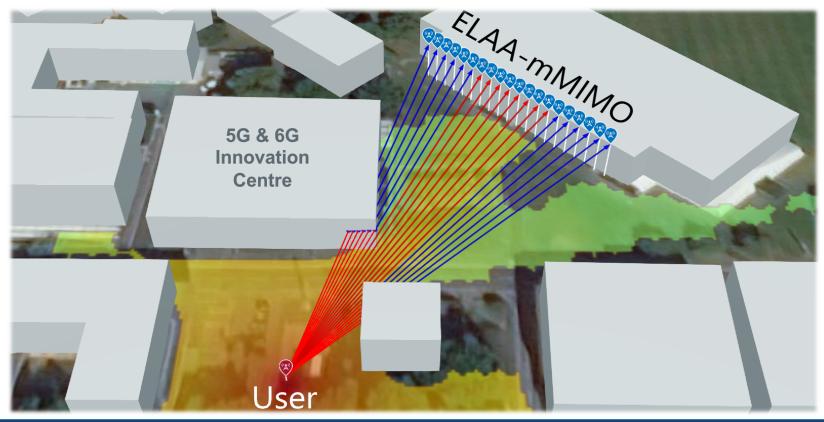


MIMO in 6G: statistical channel model and capacity prediction for ELAAmMIMO

Yi Ma *

5G Innovation Centre (5GIC) and 6G Innovation Centre (6GIC) Institute for Communications (ICS), University of Surrey DCMS 6G Workshop

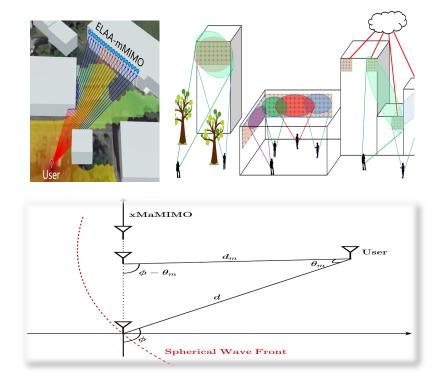

* This work presents the contribution from our group members: Jiuyu Liu, Jinfei Wang, and Na Yi.

5GIC & 6GIC

Extra-Large Aperture Array massive-MIMO

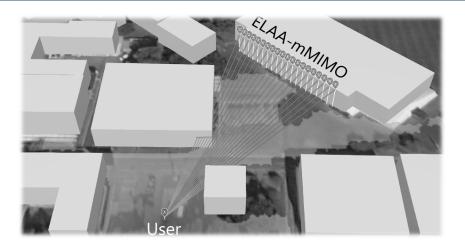
An example from the University of Surrey, Stag Hill Campus

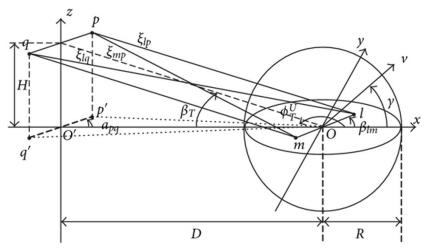
ELAA-mMIMO can be 4N-MIMO



- Channel <u>spatial nonstationarity</u>: user-to-service antenna links can have different channel statistics.
- ✤ <u>Nonlinearity</u>: low-resolution ADC/DAC, power amplifier, mixer, etc.
- ✤ <u>Non-Gaussianity</u>: low-resolution ADC/DAC, etc.
- ✤ <u>Non-Ergodicity</u>: short packet transmissions.

ELAA-mMIMO Channel Modeling




How to model the channel spatial nonstationarity?

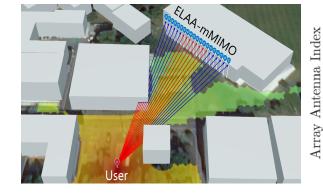
- Near-field region (no longer a far-field model)
- Spherical wavefront (no longer a plane wavefront)
- Non-identical and non-independent probability distribution
- A sparse graph (partially connected MIMO)
- ✤ A mix of LOS/NLOS links

Need for Statistical Channel Models

- Map-based deterministic channel models
- Geometry-based stochastic channel models

Not suitable for link-level ELAA-mMIMO simulations.

A simple and trackable statistical channel model is needed for link-level study.


A Novel Statistical Channel Model

2000

1500

1000

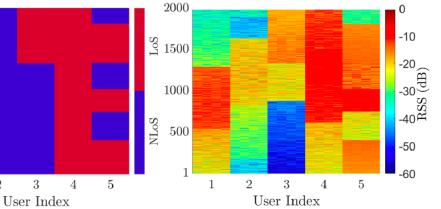
500

Algorithm Random Realization of h

Input:

- M: the number of service antennas;
- $d_{\ell}^{2\mathrm{D}}$: the 2-D distance used in (7);
- λ, d_{cor} : parameters used in (10);

Output:


h: the channel vector;

START

- 1: let $\ell = 0$; call (7) to compute $\mathcal{P}_{\text{LOS}}(d_{\ell}^{2\text{D}})$;
- 2: let $p = \mathcal{P}_{\text{LOS}}(d_{\ell}^{\text{2D}})$ and generate b_{ℓ} according to the Bernoulli distribution in (5); let $m = \ell + 1$;
- 3: Generate b_m according to the distribution in (10);
- 4: if $b_m = b_\ell$, then $m \leftarrow m + 1$; otherwise $\ell \leftarrow m$, goto step 2;
- 5: **repeat** step 3 until m = M;
- 6: Generate h using (4) and conduct the normalization;

END

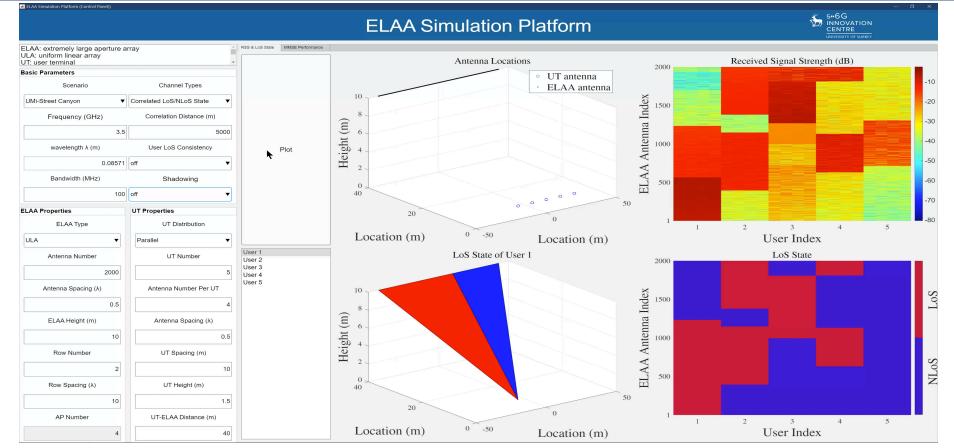
1 July 2021

- The proposed statistical channel model is simple and trackable.
- It captures spatial consistencies for LoS/NLoS, shadowing effects, and fading behaviours.
- Flexible to environment changes.
- Easy to implement for link-level Monte Carlo simulations.
- Following 3GPP channel measurement results.

5GIC & 6GIC

 $\mathbf{2}$

Capacity Prediction Using Statistical Channel Models


5»6G

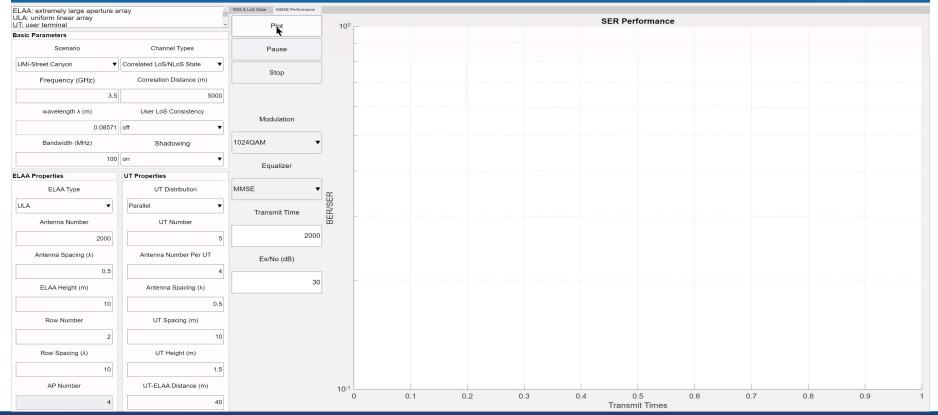
CENTRE

INNOVATION

Integration of Channel Models in Simulation Platform (1/2)

1 July 2021

5GIC & 6GIC


Integration of Channel Models in Simulation Platform (2/2)

ELAA Simulation Platform (Control Panel))

1 July 2021

5GIC & 6GIC

9

- We are working towards a fundamental paradigm shift in the MIMO research 4N Wireless MIMO.
- Established the foundation for the future mMIMO research with a novel contribution on statistical nonstationary MIMO channel model – Simple, Trackable, Accurate, and suitable for link-level study.
- Capacity prediction based on conventional and novel nonstationary MIMO channel models – found the impact of nonstationarity on mMIMO channel capacity (spectral efficiency) and channel hardening effects.
- Demonstrated link-level simulations using the developed channel models.
- Extend the channel model to more complicated multiuser scenarios.

- [1] J. Liu, Y. Ma, et al, "A novel stochastic spatially non-stationary channel model and capacity analysis for ELAA," **IEEE Globecom** 2021(submitted).
- [2] J. Liu, Y. Ma, et al, "Statistical channel models and capacity prediction for ELAAmMIMO concerning network-user two sides LoS consistency," IEEE Trans. Wireless Commun., 2021 (Under Preparation)

Thank You

Yi Ma

y.ma@surrey.ac.uk

1 July 2021

5GIC & 6GIC